点赞收藏:PyTorch常用代码段整理合集

点赞收藏:PyTorch常用代码段整理合集

首页角色扮演代号流年更新时间:2024-05-08

众所周知,程序猿在写代码时通常会在网上搜索大量资料,其中大部分是代码段。然而,这项工作常常令人心累身疲,耗费大量时间。所以,今天小编转载了知乎上的一篇文章,介绍了一些常用PyTorch代码段,希望能够为奋战在电脑桌前的众多程序猿们提供帮助!

本文代码基于 PyTorch 1.0 版本,需要用到以下包

import collections import os import shutil import tqdm import numpy as np import PIL.Image import torch import torchvision

基础配置

检查 PyTorch 版本

torch.__version__ # PyTorch version torch.version.cuda # Corresponding CUDA version torch.backends.cudnn.version() # Corresponding cuDNN version torch.cuda.get_device_name(0) # GPU type

更新 PyTorch

PyTorch 将被安装在 anaconda3/lib/python3.7/site-packages/torch/目录下。

conda update pytorch torchvision -c pytorch

固定随机种子

torch.manual_seed(0) torch.cuda.manual_seed_all(0)

指定程序运行在特定 GPU 卡上

在命令行指定环境变量

CUDA_VISIBLE_DEVICES=0,1 python train.py

或在代码中指定

os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'

判断是否有 CUDA 支持

torch.cuda.is_available()

设置为 cuDNN benchmark 模式

Benchmark 模式会提升计算速度,但是由于计算中有随机性,每次网络前馈结果略有差异。

torch.backends.cudnn.benchmark = True

如果想要避免这种结果波动,设置

torch.backends.cudnn.deterministic = True

清除 GPU 存储

有时 Control-C 中止运行后 GPU 存储没有及时释放,需要手动清空。在 PyTorch 内部可以

torch.cuda.empty_cache()

或在命令行可以先使用 ps 找到程序的 PID,再使用 kill 结束该进程

ps aux | grep pythonkill -9 [pid]

或者直接重置没有被清空的 GPU

nvidia-smi --gpu-reset -i [gpu_id]

张量处理

张量基本信息

tensor.type() # Data type tensor.size() # Shape of the tensor. It is a subclass of Python tuple tensor.dim() # Number of dimensions.

数据类型转换

# Set default tensor type. Float in PyTorch is much faster than double. torch.set_default_tensor_type(torch.FloatTensor) # Type convertions. tensor = tensor.cuda() tensor = tensor.cpu() tensor = tensor.float() tensor = tensor.long()

torch.Tensor 与 np.ndarray 转换

# torch.Tensor -> np.ndarray. ndarray = tensor.cpu().numpy() # np.ndarray -> torch.Tensor. tensor = torch.from_numpy(ndarray).float() tensor = torch.from_numpy(ndarray.copy()).float() # If ndarray has negative stride

torch.Tensor 与 PIL.Image 转换

PyTorch 中的张量默认采用 N×D×H×W 的顺序,并且数据范围在 [0, 1],需要进行转置和规范化。

# torch.Tensor -> PIL.Image. image = PIL.Image.fromarray(torch.clamp(tensor * 255, min=0, max=255 ).byte().permute(1, 2, 0).cpu().numpy()) image = torchvision.transforms.functional.to_pil_image(tensor) # Equivalently way # PIL.Image -> torch.Tensor. tensor = torch.from_numpy(np.asarray(PIL.Image.open(path)) ).permute(2, 0, 1).float() / 255 tensor = torchvision.transforms.functional.to_tensor(PIL.Image.open(path)) # Equivalently way

np.ndarray 与 PIL.Image 转换

# np.ndarray -> PIL.Image. image = PIL.Image.fromarray(ndarray.astypde(np.uint8)) # PIL.Image -> np.ndarray. ndarray = np.asarray(PIL.Image.open(path))

从只包含一个元素的张量中提取值

这在训练时统计 loss 的变化过程中特别有用。否则这将累积计算图,使 GPU 存储占用量越来越大。

value = tensor.item()

张量形变

张量形变常常需要用于将卷积层特征输入全连接层的情形。相比 torch.view,torch.reshape 可以自动处理输入张量不连续的情况。

tensor = torch.reshape(tensor, shape)

打乱顺序

tensor = tensor[torch.randperm(tensor.size(0))] # Shuffle the first dimension

水平翻转

PyTorch 不支持 tensor[::-1] 这样的负步长操作,水平翻转可以用张量索引实现。

# Assume tensor has shape N*D*H*W.tensor = tensor[:, :, :, torch.arange(tensor.size(3) - 1, -1, -1).long()]

复制张量

有三种复制的方式,对应不同的需求。

# Operation | New/Shared memory | Still in computation graph | tensor.clone() # | New | Yes | tensor.detach() # | Shared | No | tensor.detach.clone()() # | New | No |

拼接张量

注意 torch.cat 和 torch.stack 的区别在于 torch.cat 沿着给定的维度拼接,而 torch.stack 会新增一维。例如当参数是 3 个 10×5 的张量,torch.cat 的结果是 30×5 的张量,而 torch.stack 的结果是 3×10×5 的张量。

tensor = torch.cat(list_of_tensors, dim=0) tensor = torch.stack(list_of_tensors, dim=0)

将整数标记转换成独热(one-hot)编码

PyTorch 中的标记默认从 0 开始。

N = tensor.size(0) one_hot = torch.zeros(N, num_classes).long() one_hot.scatter_(dim=1, index=torch.unsqueeze(tensor, dim=1), src=torch.ones(N, num_classes).long())

得到非零/零元素

torch.nonzero(tensor) # Index of non-zero elements torch.nonzero(tensor == 0) # Index of zero elements torch.nonzero(tensor).size(0) # Number of non-zero elements torch.nonzero(tensor == 0).size(0) # Number of zero elements

张量扩展

# Expand tensor of shape 64*512 to shape 64*512*7*7. torch.reshape(tensor, (64, 512, 1, 1)).expand(64, 512, 7, 7)

矩阵乘法

# Matrix multiplication: (m*n) * (n*p) -> (m*p). result = torch.mm(tensor1, tensor2) # Batch matrix multiplication: (b*m*n) * (b*n*p) -> (b*m*p). result = torch.bmm(tensor1, tensor2) # Element-wise multiplication. result = tensor1 * tensor2

计算两组数据之间的两两欧式距离

# X1 is of shape m*d. X1 = torch.unsqueeze(X1, dim=1).expand(m, n, d) # X2 is of shape n*d. X2 = torch.unsqueeze(X2, dim=0).expand(m, n, d) # dist is of shape m*n, where dist[i][j] = sqrt(|X1[i, :] - X[j, :]|^2) dist = torch.sqrt(torch.sum((X1 - X2) ** 2, dim=2))

模型定义

卷积层

最常用的卷积层配置是

conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=True)conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=True)

如果卷积层配置比较复杂,不方便计算输出大小时,可以利用如下可视化工具辅助

链接:https://ezyang.github.io/convolution-visualizer/index.html

0GAP(Global average pooling)层

gap = torch.nn.AdaptiveAvgPool2d(output_size=1)

双线性汇合(bilinear pooling)

X = torch.reshape(N, D, H * W) # Assume X has shape N*D*H*W X = torch.bmm(X, torch.transpose(X, 1, 2)) / (H * W) # Bilinear pooling assert X.size() == (N, D, D) X = torch.reshape(X, (N, D * D)) X = torch.sign(X) * torch.sqrt(torch.abs(X) 1e-5) # Signed-sqrt normalization X = torch.nn.functional.normalize(X) # L2 normalization

多卡同步 BN(Batch normalization)

当使用 torch.nn.DataParallel 将代码运行在多张 GPU 卡上时,PyTorch 的 BN 层默认操作是各卡上数据独立地计算均值和标准差,同步 BN 使用所有卡上的数据一起计算 BN 层的均值和标准差,缓解了当批量大小(batch size)比较小时对均值和标准差估计不准的情况,是在目标检测等任务中一个有效的提升性能的技巧。

链接:https://github.com/vacancy/Synchronized-BatchNorm-PyTorch

类似 BN 滑动平均

如果要实现类似 BN 滑动平均的操作,在 forward 函数中要使用原地(inplace)操作给滑动平均赋值。

class BN(torch.nn.Module) def __init__(self): ... self.register_buffer('running_mean', torch.zeros(num_features)) def forward(self, X): ... self.running_mean = momentum * (current - self.running_mean)

计算模型整体参数量

num_parameters = sum(torch.numel(parameter) for parameter in model.parameters())

类似 Keras 的 model.summary() 输出模型信息

链接:https://github.com/sksq96/pytorch-summary

模型权值初始化

注意 model.modules() 和 model.children() 的区别:model.modules() 会迭代地遍历模型的所有子层,而 model.children() 只会遍历模型下的一层。

# Common practise for initialization. for layer in model.modules(): if isinstance(layer, torch.nn.Conv2d): torch.nn.init.kaiming_normal_(layer.weight, mode='fan_out', nonlinearity='relu') if layer.bias is not None: torch.nn.init.constant_(layer.bias, val=0.0) elif isinstance(layer, torch.nn.BatchNorm2d): torch.nn.init.constant_(layer.weight, val=1.0) torch.nn.init.constant_(layer.bias, val=0.0) elif isinstance(layer, torch.nn.Linear): torch.nn.init.xavier_normal_(layer.weight) if layer.bias is not None: torch.nn.init.constant_(layer.bias, val=0.0) # Initialization with given tensor. layer.weight = torch.nn.Parameter(tensor)

部分层使用预训练模型

注意如果保存的模型是 torch.nn.DataParallel,则当前的模型也需要是

model.load_state_dict(torch.load('model,pth'), strict=False)

将在 GPU 保存的模型加载到 CPU

model.load_state_dict(torch.load('model,pth', map_location='cpu'))

数据准备、特征提取与微调

得到视频数据基本信息

import cv2 video = cv2.VideoCapture(mp4_path) height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)) num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) fps = int(video.get(cv2.CAP_PROP_FPS)) video.release()

TSN 每段(segment)采样一帧视频

K = self._num_segments if is_train: if num_frames > K: # Random index for each segment. frame_indices = torch.randint( high=num_frames // K, size=(K,), dtype=torch.long) frame_indices = num_frames // K * torch.arange(K) else: frame_indices = torch.randint( high=num_frames, size=(K - num_frames,), dtype=torch.long) frame_indices = torch.sort(torch.cat(( torch.arange(num_frames), frame_indices)))[0] else: if num_frames > K: # Middle index for each segment. frame_indices = num_frames / K // 2 frame_indices = num_frames // K * torch.arange(K) else: frame_indices = torch.sort(torch.cat(( torch.arange(num_frames), torch.arange(K - num_frames))))[0] assert frame_indices.size() == (K,) return [frame_indices[i] for i in range(K)]

提取 ImageNet 预训练模型某层的卷积特征

# VGG-16 relu5-3 feature. model = torchvision.models.vgg16(pretrained=True).features[:-1] # VGG-16 pool5 feature. model = torchvision.models.vgg16(pretrained=True).features # VGG-16 fc7 feature. model = torchvision.models.vgg16(pretrained=True) model.classifier = torch.nn.Sequential(*list(model.classifier.children())[:-3]) # ResNet GAP feature. model = torchvision.models.resnet18(pretrained=True) model = torch.nn.Sequential(collections.OrderedDict( list(model.named_children())[:-1])) with torch.no_grad(): model.eval() conv_representation = model(image)

提取 ImageNet 预训练模型多层的卷积特征

class FeatureExtractor(torch.nn.Module): """Helper class to extract several convolution features from the given pre-trained model. Attributes: _model, torch.nn.Module. _layers_to_extract, list<str> or set<str> Example: >>> model = torchvision.models.resnet152(pretrained=True) >>> model = torch.nn.Sequential(collections.OrderedDict( list(model.named_children())[:-1])) >>> conv_representation = FeatureExtractor( pretrained_model=model, layers_to_extract={'layer1', 'layer2', 'layer3', 'layer4'})(image) """ def __init__(self, pretrained_model, layers_to_extract): torch.nn.Module.__init__(self) self._model = pretrained_model self._model.eval() self._layers_to_extract = set(layers_to_extract) def forward(self, x): with torch.no_grad(): conv_representation = [] for name, layer in self._model.named_children(): x = layer(x) if name in self._layers_to_extract: conv_representation.append(x) return conv_representation

其他预训练模型

链接:https://github.com/Cadene/pretrained-models.pytorch

微调全连接层

model = torchvision.models.resnet18(pretrained=True) for param in model.parameters(): param.requires_grad = False model.fc = nn.Linear(512, 100) # Replace the last fc layer optimizer = torch.optim.SGD(model.fc.parameters(), lr=1e-2, momentum=0.9, weight_decay=1e-4)

以较大学习率微调全连接层,较小学习率微调卷积层

model = torchvision.models.resnet18(pretrained=True) finetuned_parameters = list(map(id, model.fc.parameters())) conv_parameters = (p for p in model.parameters() if id(p) not in finetuned_parameters) parameters = [{'params': conv_parameters, 'lr': 1e-3}, {'params': model.fc.parameters()}] optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)

模型训练

常用训练和验证数据预处理

其中 ToTensor 操作会将 PIL.Image 或形状为 H×W×D,数值范围为 [0, 255] 的 np.ndarray 转换为形状为 D×H×W,数值范围为 [0.0, 1.0] 的 torch.Tensor。

train_transform = torchvision.transforms.Compose([ torchvision.transforms.RandomResizedCrop(size=224, scale=(0.08, 1.0)), torchvision.transforms.RandomHorizontalFlip(), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ]) val_transform = torchvision.transforms.Compose([ torchvision.transforms.Resize(224), torchvision.transforms.CenterCrop(224), torchvision.transforms.ToTensor(), torchvision.transforms.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ])

训练基本代码框架

for t in epoch(80): for images, labels in tqdm.tqdm(train_loader, desc='Epoch =' % (t 1)): images, labels = images.cuda(), labels.cuda() scores = model(images) loss = loss_function(scores, labels) optimizer.zero_grad() loss.backward() optimizer.step()

标记平滑(label smoothing)

for images, labels in train_loader: images, labels = images.cuda(), labels.cuda() N = labels.size(0) # C is the number of classes. smoothed_labels = torch.full(size=(N, C), fill_value=0.1 / (C - 1)).cuda() smoothed_labels.scatter_(dim=1, index=torch.unsqueeze(labels, dim=1), value=0.9) score = model(images) log_prob = torch.nn.functional.log_softmax(score, dim=1) loss = -torch.sum(log_prob * smoothed_labels) / N optimizer.zero_grad() loss.backward() optimizer.step()

Mixup

beta_distribution = torch.distributions.beta.Beta(alpha, alpha) for images, labels in train_loader: images, labels = images.cuda(), labels.cuda() # Mixup images. lambda_ = beta_distribution.sample([]).item() index = torch.randperm(images.size(0)).cuda() mixed_images = lambda_ * images (1 - lambda_) * images[index, :] # Mixup loss. scores = model(mixed_images) loss = (lambda_ * loss_function(scores, labels) (1 - lambda_) * loss_function(scores, labels[index])) optimizer.zero_grad() loss.backward() optimizer.step()

L1 正则化

l1_regularization = torch.nn.L1Loss(reduction='sum') loss = ... # Standard cross-entropy loss for param in model.parameters(): loss = torch.sum(torch.abs(param)) loss.backward()

不对偏置项进行 L2 正则化/权值衰减(weight decay)

bias_list = (param for name, param in model.named_parameters() if name[-4:] == 'bias') others_list = (param for name, param in model.named_parameters() if name[-4:] != 'bias') parameters = [{'parameters': bias_list, 'weight_decay': 0}, {'parameters': others_list}] optimizer = torch.optim.SGD(parameters, lr=1e-2, momentum=0.9, weight_decay=1e-4)

梯度裁剪(gradient clipping)

torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=20)

计算 Softmax 输出的准确率

score = model(images) prediction = torch.argmax(score, dim=1) num_correct = torch.sum(prediction == labels).item() accuruacy = num_correct / labels.size(0)

可视化模型前馈的计算图

链接:https://github.com/szagoruyko/pytorchviz

可视化学习曲线

有 Facebook 自己开发的 Visdom 和 Tensorboard 两个选择。

https://github.com/facebookresearch/visdom

https://github.com/lanpa/tensorboardX

# Example using Visdom. vis = visdom.Visdom(env='Learning curve', use_incoming_socket=False) assert self._visdom.check_connection() self._visdom.close() options = collections.namedtuple('Options', ['loss', 'acc', 'lr'])( loss={'xlabel': 'Epoch', 'ylabel': 'Loss', 'showlegend': True}, acc={'xlabel': 'Epoch', 'ylabel': 'Accuracy', 'showlegend': True}, lr={'xlabel': 'Epoch', 'ylabel': 'Learning rate', 'showlegend': True}) for t in epoch(80): tran(...) val(...) vis.line(X=torch.Tensor([t 1]), Y=torch.Tensor([train_loss]), name='train', win='Loss', update='append', opts=options.loss) vis.line(X=torch.Tensor([t 1]), Y=torch.Tensor([val_loss]), name='val', win='Loss', update='append', opts=options.loss) vis.line(X=torch.Tensor([t 1]), Y=torch.Tensor([train_acc]), name='train', win='Accuracy', update='append', opts=options.acc) vis.line(X=torch.Tensor([t 1]), Y=torch.Tensor([val_acc]), name='val', win='Accuracy', update='append', opts=options.acc) vis.line(X=torch.Tensor([t 1]), Y=torch.Tensor([lr]), win='Learning rate', update='append', opts=options.lr)

得到当前学习率

# If there is one global learning rate (which is the common case). lr = next(iter(optimizer.param_groups))['lr'] # If there are multiple learning rates for different layers. all_lr = [] for param_group in optimizer.param_groups: all_lr.append(param_group['lr'])

学习率衰减

# Reduce learning rate when validation accuarcy plateau. scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=5, verbose=True) for t in range(0, 80): train(...); val(...) scheduler.step(val_acc) # Cosine annealing learning rate. scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=80) # Reduce learning rate by 10 at given epochs. scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[50, 70], gamma=0.1) for t in range(0, 80): scheduler.step() train(...); val(...) # Learning rate warmup by 10 epochs. scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda t: t / 10) for t in range(0, 10): scheduler.step() train(...); val(...)

保存与加载断点

注意为了能够恢复训练,我们需要同时保存模型和优化器的状态,以及当前的训练轮数。

# Save checkpoint. is_best = current_acc > best_acc best_acc = max(best_acc, current_acc) checkpoint = { 'best_acc': best_acc, 'epoch': t 1, 'model': model.state_dict(), 'optimizer': optimizer.state_dict(), } model_path = os.path.join('model', 'checkpoint.pth.tar') torch.save(checkpoint, model_path) if is_best: shutil.copy('checkpoint.pth.tar', model_path) # Load checkpoint. if resume: model_path = os.path.join('model', 'checkpoint.pth.tar') assert os.path.isfile(model_path) checkpoint = torch.load(model_path) best_acc = checkpoint['best_acc'] start_epoch = checkpoint['epoch'] model.load_state_dict(checkpoint['model']) optimizer.load_state_dict(checkpoint['optimizer']) print('Load checkpoint at epoch %d.' % start_epoch)

计算准确率、查准率(precision)、查全率(recall)

# data['label'] and data['prediction'] are groundtruth label and prediction # for each image, respectively. accuracy = np.mean(data['label'] == data['prediction']) * 100 # Compute recision and recall for each class. for c in range(len(num_classes)): tp = np.dot((data['label'] == c).astype(int), (data['prediction'] == c).astype(int)) tp_fp = np.sum(data['prediction'] == c) tp_fn = np.sum(data['label'] == c) precision = tp / tp_fp * 100 recall = tp / tp_fn * 100

PyTorch 其他注意事项

模型定义

def forward(self, x): ... x = torch.nn.functional.dropout(x, p=0.5, training=self.training)

PyTorch 性能与调试

x = torch.nn.functional.relu(x, inplace=True)

with torch.autograd.profiler.profile(enabled=True, use_cuda=False) as profile: ... print(profile)

或者在命令行运行

python -m torch.utils.bottleneck main.py

致谢

感谢 @些许流年和@El tnoto的勘误。由于作者才疏学浅,更兼时间和精力所限,代码中错误之处在所难免,敬请读者批评指正。

参考资料

张皓:南京大学计算机系机器学习与数据挖掘所(LAMDA)硕士生,研究方向为计算机视觉和机器学习,特别是视觉识别和深度学习。个人主页:http://lamda.nju.edu.cn/zhangh/

原知乎链接:https://zhuanlan.zhihu.com/p/59205847?

本文为机器之心转载,转载请联系作者获得授权。

查看全文
大家还看了
也许喜欢
更多游戏

Copyright © 2024 妖气游戏网 www.17u1u.com All Rights Reserved