本文后面有蜘蛛图,提前预警
近期,随着漫威超级英雄电影《蜘蛛侠:英雄远征》的热映,蜘蛛侠彼得•帕克,这个因为被放射性感染的蜘蛛咬伤而具备了超能力的高中生,继《复仇者联盟4》之后又和影迷们见面了。他虽然不再有钢铁侠的呵护和美国队长的统领,却再一次独挑大梁,成为漫威宇宙中的一名孤胆英雄。
(图片来源:影片海报)
和以往所有蜘蛛侠系列电影一样,蜘蛛侠继续发挥他上天入地和飞檐走壁的超能力,所依靠的还是他自己发明的神器——蛛网发射器。每当面临危急时刻,蜘蛛侠就会启动藏在手心处的蛛网发射器开关,快速地从蛛网发射器中喷出粘性液体,在遇到空气后迅速固化,形成蛛丝一样的绳索。
(动图来源:https://giphy.com/)
而蛛丝的威力相信大家已经在前几部影片中领略过了。它不仅能拽着蜘蛛侠在高楼林立的城市半空中自由穿梭,逍遥快活地荡着秋千。
(动图来源:https://giphy.com/)
还能帮助蜘蛛侠徒手拉住高速运行的火车。
甚至把被劈开的巨型轮船拉在一起。
凭借着这细细的蛛丝,蜘蛛侠多次挽狂澜于既倒,扶大厦之将倾,救百姓于水火,深刻诠释了什么叫侠之大者,为国为民。
现实中的蛛丝和电影里相比毫不逊色
不过你可能会说,这毕竟是科幻大片中的桥段,电影想怎么拍就怎么拍,不过是导演和编剧一拍脑门的事,现实世界中的蜘蛛丝随便拿一根竹竿就能把它挑断,怎么可能有这么结实?其实,自然界中的蜘蛛丝的结实程度和影片中的比起来可以说是毫不逊色,它之所以很容易就被挑断,原因只有一个——太细了!
六种蛛丝以及蛛丝上悬挂的用于捕捉猎物的粘性液滴(图片来源:参考文献[1,2])
上图分别为艾蛛(Cyclosa turbinate)、三带金蛛 (Argiope trifasciata)、 金蛛(Argiope aurantia) 以及只在国外分布的三种蜘蛛的蛛丝在显微镜下的图片。
蜘蛛丝的直径一般不到0.01mm(10微米),比我们的头发丝还要细上四五倍,所以总是给人一种吹弹可破的印象。它的直径已经超出了我们肉眼所能看到的最小尺寸。其实,我们日常所见到的蜘蛛丝并不只是裸露的纯蜘蛛丝,而是表面挂满了蜘蛛分泌的用来捕获食物的粘性液滴。
当蜘蛛丝变得足够粗时,效果就截然不同了。蜘蛛丝具有高达
的断裂强度,是人体骨骼的135倍,高强度合金钢的25倍,钻石的6倍。比我们目前已知并应用的所有天然丝和人造丝的断裂强度都要大。拿同样粗细的蜘蛛丝和钢丝进行拉伸试验,扯断蜘蛛丝所需的能量比扯断钢丝所需的能量要足足大上100 倍。
以我国特有的十字园蛛为例,有研究表明,当它的蛛丝达到和铅笔一样粗时,甚至可以拉住一架自重180吨、正以每秒80米速度降落的波音747飞机!
十字园蛛(图片来源:https://www.veer.com/photo/132680760)
蜘蛛侠徒手停火车需要多大拉力?
我们进一步以《蜘蛛侠2》中最为经典的片段——蜘蛛侠徒手停火车为例。来自英国莱斯特大学的詹姆斯•福斯特等人计算了在这一过程中,蜘蛛侠的蛛丝所需要承受的拉力。
他们以一辆4节R160型号的纽约地铁为模型进行计算,每节车厢满载为246人,四节车厢的车和人的总重量大约为200吨。影片中的地铁正在全速行驶,时速约为24米/秒,蜘蛛侠大概在50秒内将它平稳安全地停下,这需要蛛丝给它30万牛顿的拉力。以下图中蛛丝之于蜘蛛侠手臂的比例可以大致估算出:蛛丝的直径大概为1.75毫米,由此可以算出,蜘蛛侠的蛛丝的拉伸强度至少为3.12×1010 Pa,是人体骨骼的240倍,高强度合金钢的45倍,钻石的11倍!
(图片来源:http://app.tongbu.com及作者制作)
虽然这一强度要求的确超出了普通蜘蛛丝强度的最大值,但也并不是完全把蜘蛛家族所有成员“按在地上摩擦”,达尔文树皮蛛就完全能hold住。
达尔文树皮蛛(图片来源:https://commons.wikimedia.org/wiki/File:Bark_Spider_2011.jpg)
蜘蛛中最强的织网王者:达尔文树皮蛛
达尔文树皮蛛发现于马达加斯加的Andasibe-Mantadia国家公园,并于2009年以生物学家达尔文的名字命名,以此来纪念他的代表作《物种起源》发表150周年。
达尔文树皮蛛吐的丝强度达到了12×1010 Pa。如果说普通蜘蛛的蛛丝强度在目前已知的所有天然丝和人造丝中难觅对手,那达尔文树皮蛛的蛛丝强度已然到了独孤求败的程度。这种蛛丝的硬度是杜邦公司生产的人造纤维材料凯夫拉(广泛用于坦克、装甲车以及防弹衣)的十倍,几乎可以同时逼停四辆影片中的地铁。达尔文树皮蛛还编织出了所有蜘蛛中最大的网,宽度达到了25米。而你可能会觉得这种蜘蛛一定是个庞然大物,实则不然,雌蛛身长不到2cm,只有指甲盖般大小;雄蛛的体积就更小了,只有雌蛛的五分之一。
五级结构成就蜘蛛网超强韧性
蜘蛛丝之所以有如此高的强度和韧性,与蜘蛛丝内部巧妙独特的分级结构密不可分。
蜘蛛丝的分级结构(图片来源:参考文献[8,9,10]及作者加工)
首先,蜘蛛丝的一级结构是由氨基酸分子之间通过氢键(分子之间的一种相互作用力)彼此紧密相连形成的氢键β-链,氢键β-链再通过氢键相互连接够成蛛丝的二级结构——氢键β-片状纳米晶体。
氢键β-片状纳米晶体嵌入到半无定型状态的β-转角多肽链中形成α-螺旋结构,也就是蛛丝的三级结构——蛋白质纳米复合结构。这一结构是蛛丝呈现高强度和高弹性的关键因素,使得蛛丝在拉伸、弯曲等形变过程中既能有足够的相互作用力彼此牵引咬合,又能给蛛丝提供足够的活动空间,使其能产生较大的形变而不至于断裂。
由数百条三级结构形成的丝原纤维被包裹层、外表皮捆绑在一起,发挥合力作用,进一步放大了蛛丝的韧性和强度,最终形成了直径在微米级的四级结构——蜘蛛丝以及由蜘蛛丝编织成的五级结构——蜘蛛网。
蜘蛛丝应用前景广阔但难以商业化应用
蜘蛛丝具有高弹性、高韧性、高吸水性、质量轻和可生物降解等诸多优点,使得它在很多领域,如:航空航天领域(人造卫星的结构材料及复合材料和宇航服)、军事领域(坦克、装甲、飞机,防弹衣和降落伞等)、工业领域(高强度材料,车轮外胎等)、医学领域(人造组织或器官、可降解手术缝合线等生理组织和生物材料)以及纺织领域(服饰、围巾等)都有着巨大的应用前景。
但是迄今为止,蜘蛛丝的商业化应用还没有实现,这是因为蜘蛛不同于家蚕可以大规模人工饲养,蜘蛛具有自相残*、同类相食的特性。你可能注意到,生活中很难见到一张蛛网上同时生活着两只蜘蛛。不过随着科技的发展,科学家利用转基因技术,将蜘蛛丝注入到蚕卵中,这样在家蚕的基因链中就有了蜘蛛吐丝的基因,利用这种“借鸡下蛋”转基因技术,有望实现蜘蛛丝的大规模生产制备。
用蜘蛛丝制作的斗篷
现实世界中的蜘蛛由于相貌多丑陋狰狞,常常令人毛骨悚然、避之不及,这种形象和影片中英俊善良的蜘蛛侠简直“判若两蛛”。
实际上,相对于人类的生活生产而言,大部分蜘蛛还是属于益虫的。因为它不破坏粮食庄稼,既能捕食苍蝇、蚊子等害虫,又能入药。即便极少数蜘蛛带有一定的毒性也很难带来致命的伤害,人被蜘蛛伤而致死的几率甚至比被蜜蜂蛰死的几率还要小得多。
在大多数情况下,蜘蛛绝不会主动攻击人类。即便攻击人类,蜘蛛的牙齿也很难刺穿人的皮肤,所以我们不能因为人家长得丑就“以貌取蛛”,这是很不客观、很不科学的。
比如下面图片中的那位高脚白额蛛,它之于蟑螂好比中国人之于小龙虾,可以说是蟑螂的头号天敌,并且能一次捕食多只蟑螂。它来者不拒,抱住就啃,之后大快朵颐。另外,它生性胆小,喜欢潜入人类住宅中,昼伏夜出而且不结网,可谓人畜无害,逐渐成为居家生物防治灭蟑的宠儿(当然仅限于半夜醒来,看到这东西倒挂在天花板上,嘴里还叼着一只小强的尸体抱着啃,都还能睡得着的人)。
(动图来源:作者制作)
Copyright © 2024 妖气游戏网 www.17u1u.com All Rights Reserved