用C#实现神奇宝贝检测!掌握Onnx yolov8技术,轻松捕捉精灵世界!

用C#实现神奇宝贝检测!掌握Onnx yolov8技术,轻松捕捉精灵世界!

首页卡牌对战代号世界手游更新时间:2024-06-03
效果

模型信息

Model Properties ------------------------- date:2023-12-25T17:55:44.583431 author:Ultralytics task:detect license:AGPL-3.0 https://ultralytics.com/license version:8.0.172 stride:32 batch:1 imgsz:[640, 640] names:{0: 'pikachu', 1: 'charmander', 2: 'bulbasaur', 3: 'squirtle', 4: 'eevee', 5: 'other', 6: 'jigglypuff'} --------------------------------------------------------------- Inputs ------------------------- name:images tensor:Float[1, 3, 640, 640] --------------------------------------------------------------- Outputs ------------------------- name:output0 tensor:Float[1, 11, 8400] --------------------------------------------------------------- 项目

代码

using Microsoft.ML.OnnxRuntime; using Microsoft.ML.OnnxRunTime.Tensors; using OpenCvSharp; using OpenCvSharp.Dnn; using System; using System.Collections.Generic; using System.Drawing; using System.Drawing.Imaging; using System.IO; using System.Linq; using System.Text; using System.Windows.Forms; namespace Onnx_Yolov8_Demo { public partial class Form1 : Form { public Form1() { InitializeComponent(); } string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png"; string image_path = ""; string model_path; string classer_path; public string[] class_names; public int class_num; DateTime dt1 = DateTime.Now; DateTime dt2 = DateTime.Now; int input_height; int input_width; float ratio_height; float ratio_width; InferenceSession onnx_session; int box_num; float conf_threshold; float nms_threshold; /// <summary> /// 选择图片 /// </summary> /// <param name="sender"></param> /// <param name="e"></param> private void button1_Click(object sender, EventArgs e) { OpenFileDialog ofd = new OpenFileDialog(); ofd.Filter = fileFilter; if (ofd.ShowDialog() != DialogResult.OK) return; pictureBox1.Image = null; image_path = ofd.FileName; pictureBox1.Image = new Bitmap(image_path); textBox1.Text = ""; pictureBox2.Image = null; } /// <summary> /// 推理 /// </summary> /// <param name="sender"></param> /// <param name="e"></param> private void button2_Click(object sender, EventArgs e) { if (image_path == "") { return; } button2.Enabled = false; pictureBox2.Image = null; textBox1.Text = ""; Application.DoEvents(); Mat image = new Mat(image_path); //图片缩放 int height = image.Rows; int width = image.Cols; Mat temp_image = image.Clone(); if (height > input_height || width > input_width) { float scale = Math.Min((float)input_height / height, (float)input_width / width); OpenCvSharp.Size new_size = new OpenCvSharp.Size((int)(width * scale), (int)(height * scale)); Cv2.Resize(image, temp_image, new_size); } ratio_height = (float)height / temp_image.Rows; ratio_width = (float)width / temp_image.Cols; Mat input_img = new Mat(); Cv2.CopyMakeBorder(temp_image, input_img, 0, input_height - temp_image.Rows, 0, input_width - temp_image.Cols, BorderTypes.Constant, 0); //Cv2.ImShow("input_img", input_img); //输入Tensor Tensor<float> input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 }); for (int y = 0; y < input_img.Height; y ) { for (int x = 0; x < input_img.Width; x ) { input_tensor[0, 0, y, x] = input_img.At<Vec3b>(y, x)[0] / 255f; input_tensor[0, 1, y, x] = input_img.At<Vec3b>(y, x)[1] / 255f; input_tensor[0, 2, y, x] = input_img.At<Vec3b>(y, x)[2] / 255f; } } List<NamedOnnxValue> input_container = new List<NamedOnnxValue> { NamedOnnxValue.CreateFromTensor("images", input_tensor) }; //推理 dt1 = DateTime.Now; var ort_outputs = onnx_session.Run(input_container).ToArray(); dt2 = DateTime.Now; float[] data = Transpose(ort_outputs[0].AsTensor<float>().ToArray(), 4 class_num, box_num); float[] confidenceInfo = new float[class_num]; float[] rectData = new float[4]; List<DetectionResult> detResults = new List<DetectionResult>(); for (int i = 0; i < box_num; i ) { Array.Copy(data, i * (class_num 4), rectData, 0, 4); Array.Copy(data, i * (class_num 4) 4, confidenceInfo, 0, class_num); float score = confidenceInfo.Max(); // 获取最大值 int maxIndex = Array.IndexOf(confidenceInfo, score); // 获取最大值的位置 int _centerX = (int)(rectData[0] * ratio_width); int _centerY = (int)(rectData[1] * ratio_height); int _width = (int)(rectData[2] * ratio_width); int _height = (int)(rectData[3] * ratio_height); detResults.Add(new DetectionResult( maxIndex, class_names[maxIndex], new Rect(_centerX - _width / 2, _centerY - _height / 2, _width, _height), score)); } //NMS CvDnn.NMSBoxes(detResults.Select(x => x.Rect), detResults.Select(x => x.Confidence), conf_threshold, nms_threshold, out int[] indices); detResults = detResults.Where((x, index) => indices.Contains(index)).ToList(); //绘制结果 Mat result_image = image.Clone(); foreach (DetectionResult r in detResults) { Cv2.PutText(result_image, $"{r.Class}:{r.Confidence:P0}", new OpenCvSharp.Point(r.Rect.TopLeft.X, r.Rect.TopLeft.Y - 10), HersheyFonts.HersheySimplex, 1, Scalar.Red, 2); Cv2.Rectangle(result_image, r.Rect, Scalar.Red, thickness: 2); } pictureBox2.Image = new Bitmap(result_image.ToMemoryStream()); textBox1.Text = "推理耗时:" (dt2 - dt1).TotalMilliseconds "ms"; button2.Enabled = true; } /// <summary> ///窗体加载 /// </summary> /// <param name="sender"></param> /// <param name="e"></param> private void Form1_Load(object sender, EventArgs e) { model_path = "model/yolov8-pokemon-detection.onnx"; //创建输出会话,用于输出模型读取信息 SessionOptions options = new SessionOptions(); options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO; options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行 // 创建推理模型类,读取模型文件 onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径 input_height = 640; input_width = 640; box_num = 8400; conf_threshold = 0.25f; nms_threshold = 0.5f; classer_path = "model/lable.txt"; class_names = File.ReadAllLines(classer_path, Encoding.UTF8); class_num = class_names.Length; image_path = "test_img/1.jpg"; pictureBox1.Image = new Bitmap(image_path); this.Text = "C# Onnx yolov8 pokemon detection"; } /// <summary> /// 保存 /// </summary> /// <param name="sender"></param> /// <param name="e"></param> private void button3_Click(object sender, EventArgs e) { if (pictureBox2.Image == null) { return; } Bitmap output = new Bitmap(pictureBox2.Image); SaveFileDialog sdf = new SaveFileDialog(); sdf.Title = "保存"; sdf.Filter = "Images (*.jpg)|*.jpg|Images (*.png)|*.png|Images (*.bmp)|*.bmp|Images (*.emf)|*.emf|Images (*.exif)|*.exif|Images (*.gif)|*.gif|Images (*.ico)|*.ico|Images (*.tiff)|*.tiff|Images (*.wmf)|*.wmf"; if (sdf.ShowDialog() == DialogResult.OK) { switch (sdf.FilterIndex) { case 1: { output.Save(sdf.FileName, ImageFormat.Jpeg); break; } case 2: { output.Save(sdf.FileName, ImageFormat.Png); break; } case 3: { output.Save(sdf.FileName, ImageFormat.Bmp); break; } case 4: { output.Save(sdf.FileName, ImageFormat.Emf); break; } case 5: { output.Save(sdf.FileName, ImageFormat.Exif); break; } case 6: { output.Save(sdf.FileName, ImageFormat.Gif); break; } case 7: { output.Save(sdf.FileName, ImageFormat.Icon); break; } case 8: { output.Save(sdf.FileName, ImageFormat.Tiff); break; } case 9: { output.Save(sdf.FileName, ImageFormat.Wmf); break; } } MessageBox.Show("保存成功,位置:" sdf.FileName); } } private void pictureBox1_DoubleClick(object sender, EventArgs e) { ShowNormalImg(pictureBox1.Image); } private void pictureBox2_DoubleClick(object sender, EventArgs e) { ShowNormalImg(pictureBox2.Image); } public void ShowNormalImg(Image img) { if (img == null) return; frmShow frm = new frmShow(); frm.Width = Screen.PrimaryScreen.Bounds.Width; frm.Height = Screen.PrimaryScreen.Bounds.Height; if (frm.Width > img.Width) { frm.Width = img.Width; } if (frm.Height > img.Height) { frm.Height = img.Height; } bool b = frm.richTextBox1.ReadOnly; Clipboard.SetDataObject(img, true); frm.richTextBox1.ReadOnly = false; frm.richTextBox1.Paste(DataFormats.GetFormat(DataFormats.Bitmap)); frm.richTextBox1.ReadOnly = b; frm.ShowDialog(); } public unsafe float[] Transpose(float[] tensorData, int rows, int cols) { float[] transposedTensorData = new float[tensorData.Length]; fixed (float* pTensorData = tensorData) { fixed (float* pTransposedData = transposedTensorData) { for (int i = 0; i < rows; i ) { for (int j = 0; j < cols; j ) { int index = i * cols j; int transposedIndex = j * rows i; pTransposedData[transposedIndex] = pTensorData[index]; } } } } return transposedTensorData; } } public class DetectionResult { public DetectionResult(int ClassId, string Class, Rect Rect, float Confidence) { this.ClassId = ClassId; this.Confidence = Confidence; this.Rect = Rect; this.Class = Class; } public string Class { get; set; } public int ClassId { get; set; } public float Confidence { get; set; } public Rect Rect { get; set; } } }

查看全文
大家还看了
也许喜欢
更多游戏

Copyright © 2024 妖气游戏网 www.17u1u.com All Rights Reserved