有2种常见的多维度查询场景,分别是:
普通的数据库查询,很难实现上述需求场景,更不用提模糊查询、全文检索了。
下面结合楼主的经验和知识,介绍初级方案、进阶方案(上ElasticSearch),大部分情况下推荐使用ElasticSearch来实现多维度查询,赶时间的读者可以直接跳到“进阶方案:将ElasticSearch添加到现有系统中”。
初级方案1、根据常见查询场景,增加相应字段的组合索引这个是为了实现带多个筛选条件的列表查询的。
优点于是就出现了经典的一幕:产品提需求说要支持某个新字段的筛选查询,开发反馈说做不了、或者成本很高,于是不了了之 :)
2、异构出多份数据更加优雅的方式,是异构出多份数据。
例如,C端按用户维度查询,B端按店铺维度查询,如果还有供应商,按供应商维度查询。一个数据库只能按一种维度来分库。
优点是:非常简单。
缺点通过Canal同步数据,异构出多个维度的数据源。详见之前写的这篇文章:架构师必备:巧用Canal实现异步、解耦的架构
优点是:更加优雅,无需改动程序主流程。
缺点现有系统一般都会用到Mysql数据库,需要引入ES,为系统增强多维度查询的功能。
MySQL继续承担业务的实时读写请求、事务操作,ES承担近实时的多维度查询请求,ES可支撑十万级别QPS(取决于节点数、分片数、副本数)。
需要注意的是:同步数据至ES是秒级延迟(主要耗费在索引refresh),而查询已进入索引的文档,是在数毫秒到数百毫秒级别。
需要同步机制,来把MySQL中的数据导入到ES中,主要流程如下:
代码示例如下(含详细注释):
public class EsClientDemo {
// demo演示:创建client,然后搜索
public void createClientAndSearch() throws Exception {
// 创建底层的low level rest client,连接ES节点的9200端口
RestClient restClient = RestClient.builder(
new HttpHost("localhost", 9200)).build();
// 创建transport类,传入底层的low level rest client,和json解析器
ElasticSearchTransport transport = new RestClientTransport(
restClient, new JacksonJsonpMapper());
// 创建核心client类,后续操作都围绕此对象
ElasticsearchClient esClient = new ElasticsearchClient(transport);
// 多条件搜索
// fluent API风格,并且使用lambda函数提高代码可读性,可以看出Java api client的语法,同http json请求体非常相似
String searchText = "bike";
String brand = "brandNew";
double maxPrice = 1000;
// 根据商品名称,做match全文检索查询
Query byName = MatchQuery.of(m -> m
.field("name")
.query(searchText)
)._toQuery();
// 根据品牌,做term精确查询
Query byBrand = new Query.Builder()
.term(t -> t
.field("brand")
.value(v -> v.stringValue(brand))
).build();
// 根据价格,做range范围查询
Query byMaxPrice = RangeQuery.of(r -> r
.field("price")
.lte(JsonData.of(maxPrice))
)._toQuery();
// 调用核心client,做查询
SearchResponse<Product> response = esClient.search(s -> s
.index("products") // 指定ES索引
.query(q -> q // 指定查询DSL
.bool(b -> b // 多条件must组合,必须同时满足
.must(byName)
.must(byBrand)
.must(byMaxPrice)
)
),
Product.class
);
// 遍历命中结果
List<Hit<Product>> hits = response.hits().hits();
for (Hit<Product> hit: hits) {
Product product = hit.source(); // 通过source获取结果
logger.info("Found product " product.getName() ", score " hit.score());
}
}
}
可参阅:https://www.elastic.co/guide/en/elasticsearch/client/index.html
数据模型转换因为既有MySQL,又有ES,所以有2种异构的数据模型。需要在代码中定义2种数据模型,并且实现类型互相转换的工具类。
ES之所以比MySQL,能胜任多维度查询、全文检索,是因为底层数据结构不同:
另外简要回顾一下ES的架构要点:
前面提到ES超高并发下存在瓶颈,极端情况下可能遇到OOM,因此超高并发下需要C 实现的专用搜索引擎
例如:
Copyright © 2024 妖气游戏网 www.17u1u.com All Rights Reserved