本文分享自华为云社区《》,作者:龙哥手记 。
带着BAT大厂的面试问题去理解提示
请带着这些问题继续后文,会很大程度上帮助你更好的理解相关知识点。@pdai
线程池能够对线程进行统一分配,调优和监控:
Java是如何实现和管理线程池的?
从JDK 5开始,把工作单元与执行机制分离开来,工作单元包括Runnable和Callable,而执行机制由Executor框架提供。
public class WorkerThread implements Runnable {
private String command;
public WorkerThread(String s){
this.command=s;
}
@Override
public void run() {
System.out.println(Thread.currentThread().getName() " Start. Command = " command);
processCommand();
System.out.println(Thread.currentThread().getName() " End.");
}
private void processCommand() {
try {
Thread.sleep(5000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
@Override
public String toString(){
return this.command;
}
}
SimpleThreadPool
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class SimpleThreadPool {
public static void main(String[] args) {
ExecutorService executor = Executors.newFixedThreadPool(5);
for (int i = 0; i < 10; i ) {
Runnable worker = new WorkerThread("" i);
executor.execute(worker);
}
executor.Shutdown(); // This will make the executor accept no new threads and finish all existing threads in the queue
while (!executor.isTerminated()) { // Wait until all threads are finish,and also you can use "executor.awaitTermination();" to wait
}
System.out.println("Finished all threads");
}
}
程序中我们创建了固定大小为五个工作线程的线程池。然后分配给线程池十个工作,因为线程池大小为五,它将启动五个工作线程先处理五个工作,其他的工作则处于等待状态,一旦有工作完成,空闲下来工作线程就会捡取等待队列里的其他工作进行执行。
这里是以上程序的输出。
pool-1-thread-2 Start. Command = 1
pool-1-thread-4 Start. Command = 3
pool-1-thread-1 Start. Command = 0
pool-1-thread-3 Start. Command = 2
pool-1-thread-5 Start. Command = 4
pool-1-thread-4 End.
pool-1-thread-5 End.
pool-1-thread-1 End.
pool-1-thread-3 End.
pool-1-thread-3 Start. Command = 8
pool-1-thread-2 End.
pool-1-thread-2 Start. Command = 9
pool-1-Thread-1 Start. Command = 7
pool-1-thread-5 Start. Command = 6
pool-1-thread-4 Start. Command = 5
pool-1-thread-2 End.
pool-1-thread-4 End.
pool-1-thread-3 End.
pool-1-thread-5 End.
pool-1-thread-1 End.
Finished all threads
输出表明线程池中至始至终只有五个名为 "pool-1-thread-1" 到 "pool-1-thread-5" 的五个线程,这五个线程不随着工作的完成而消亡,会一直存在,并负责执行分配给线程池的任务,直到线程池消亡。
Executors 类提供了使用了 ThreadPoolExecutor 的简单的 ExecutorService 实现,但是 ThreadPoolExecutor 提供的功能远不止于此。我们可以在创建 ThreadPoolExecutor 实例时指定活动线程的数量,我们也可以限制线程池的大小并且创建我们自己的 RejectedExecutionHandler 实现来处理不能适应工作队列的工作。
这里是我们自定义的 RejectedExecutionHandler 接口的实现。
import java.util.concurrent.RejectedExecutionHandler;
import java.util.concurrent.ThreadPoolExecutor;
public class RejectedExecutionHandlerImpl implements RejectedExecutionHandler {
@Override
public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
System.out.println(r.toString() " is rejected");
}
}
ThreadPoolExecutor 提供了一些方法,我们可以使用这些方法来查询 executor 的当前状态,线程池大小,活动线程数量以及任务数量。因此我是用来一个监控线程在特定的时间间隔内打印 executor 信息。
import java.util.concurrent.ThreadPoolExecutor;
public class MyMonitorThread implements Runnable
{
private ThreadPoolExecutor executor;
private int seconds;
private boolean run=true;
public MyMonitorThread(ThreadPoolExecutor executor, int delay)
{
this.executor = executor;
this.seconds=delay;
}
public void shutdown(){
this.run=false;
}
@Override
public void run()
{
while(run){
System.out.println(
String.format("[monitor] [%d/%d] Active: %d, Completed: %d, Task: %d, isShutdown: %s, isTerminated: %s",
this.executor.getPoolSize(),
this.executor.getCorePoolSize(),
this.executor.getActiveCount(),
this.executor.getCompletedTaskCount(),
this.executor.getTaskCount(),
this.executor.isShutdown(),
this.executor.isTerminated()));
try {
Thread.sleep(seconds*1000);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
这里是使用 ThreadPoolExecutor 的线程池实现例子。
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.Executors;
import java.util.concurrent.ThreadFactory;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;
public class WorkerPool {
public static void main(String args[]) throws InterruptedException{
//RejectedExecutionHandler implementation
RejectedExecutionHandlerImpl rejectionHandler = new RejectedExecutionHandlerImpl();
//Get the ThreadFactory implementation to use
ThreadFactory threadFactory = Executors.defaultThreadFactory();
//creating the ThreadPoolExecutor
ThreadPoolExecutor executorPool = new ThreadPoolExecutor(2, 4, 10, TimeUnit.SECONDS, new ArrayBlockingQueue<Runnable>(2), threadFactory, rejectionHandler);
//start the monitoring thread
MyMonitorThread monitor = new MyMonitorThread(executorPool, 3);
Thread monitorThread = new Thread(monitor);
monitorThread.start();
//submit work to the thread pool
for(int i=0; i<10; i ){
executorPool.execute(new WorkerThread("cmd" i));
}
Thread.sleep(30000);
//shut down the pool
executorPool.shutdown();
//shut down the monitor thread
Thread.sleep(5000);
monitor.shutdown();
}
}
注意在初始化 ThreadPoolExecutor 时,我们保持初始池大小为 2,最大池大小为 4 而工作队列大小为 2。因此如果已经有四个正在执行的任务而此时分配来更多任务的话,工作队列将仅仅保留他们(新任务)中的两个,其他的将会被 RejectedExecutionHandlerImpl 处理。
上面程序的输出可以证实以上观点。
pool-1-thread-1 Start. Command = cmd0
pool-1-thread-4 Start. Command = cmd5
cmd6 is rejected
pool-1-thread-3 Start. Command = cmd4
pool-1-thread-2 Start. Command = cmd1
cmd7 is rejected
cmd8 is rejected
cmd9 is rejected
[monitor] [0/2] Active: 4, Completed: 0, Task: 6, isShutdown: false, isTerminated: false
[monitor] [4/2] Active: 4, Completed: 0, Task: 6, isShutdown: false, isTerminated: false
pool-1-thread-4 End.
pool-1-thread-1 End.
pool-1-thread-2 End.
pool-1-thread-3 End.
pool-1-thread-1 Start. Command = cmd3
pool-1-thread-4 Start. Command = cmd2
[monitor] [4/2] Active: 2, Completed: 4, Task: 6, isShutdown: false, isTerminated: false
[monitor] [4/2] Active: 2, Completed: 4, Task: 6, isShutdown: false, isTerminated: false
pool-1-thread-1 End.
pool-1-thread-4 End.
[monitor] [4/2] Active: 0, Completed: 6, Task: 6, isShutdown: false, isTerminated: false
[monitor] [2/2] Active: 0, Completed: 6, Task: 6, isShutdown: false, isTerminated: false
[monitor] [2/2] Active: 0, Completed: 6, Task: 6, isShutdown: false, isTerminated: false
[monitor] [2/2] Active: 0, Completed: 6, Task: 6, isShutdown: false, isTerminated: false
[monitor] [2/2] Active: 0, Completed: 6, Task: 6, isShutdown: false, isTerminated: false
[monitor] [2/2] Active: 0, Completed: 6, Task: 6, isShutdown: false, isTerminated: false
[monitor] [0/2] Active: 0, Completed: 6, Task: 6, isShutdown: true, isTerminated: true
[monitor] [0/2] Active: 0, Completed: 6, Task: 6, isShutdown: true, isTerminated: true
注意 executor 的活动任务、完成任务以及所有完成任务,这些数量上的变化。我们可以调用 shutdown() 方法来结束所有提交的任务并终止线程池。
ThreadPoolExecutor使用详解其实java线程池的实现原理很简单,说白了就是一个线程集合workerSet和一个阻塞队列workQueue。当用户向线程池提交一个任务(也就是线程)时,线程池会先将任务放入workQueue中。workerSet中的线程会不断的从workQueue中获取线程然后执行。当workQueue中没有任务的时候,worker就会阻塞,直到队列中有任务了就取出来继续执行。
Execute原理当一个任务提交至线程池之后:
当ThreadPoolExecutor创建新线程时,通过CAS来更新线程池的状态ctl.
参数public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
RejectedExecutionHandler handler)
LinkedBlockingQueue比ArrayBlockingQueue在插入删除节点性能方面更优,但是二者在put(), take()任务的时均需要加锁,SynchronousQueue使用无锁算法,根据节点的状态判断执行,而不需要用到锁,其核心是Transfer.transfer().
当然也可以根据应用场景实现RejectedExecutionHandler接口,自定义饱和策略,如记录日志或持久化存储不能处理的任务。
三种类型newFixedThreadPoolpublic static ExecutorService newFixedThreadPool(int nThreads) {
return new ThreadPoolExecutor(nThreads, nThreads,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>());
}
线程池的线程数量达corePoolSize后,即使线程池没有可执行任务时,也不会释放线程。
FixedThreadPool的工作队列为无界队列LinkedBlockingQueue(队列容量为Integer.MAX_VALUE), 这会导致以下问题:
public static ExecutorService newSingleThreadExecutor() {
return new FinalizableDelegatedExecutorService
(new ThreadPoolExecutor(1, 1,
0L, TimeUnit.MILLISECONDS,
new LinkedBlockingQueue<Runnable>()));
}
初始化的线程池中只有一个线程,如果该线程异常结束,会重新创建一个新的线程继续执行任务,唯一的线程可以保证所提交任务的顺序执行.
由于使用了无界队列, 所以SingleThreadPool永远不会拒绝, 即饱和策略失效
newCachedThreadPoolpublic static ExecutorService newCachedThreadPool() {
return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
60L, TimeUnit.SECONDS,
new SynchronousQueue<Runnable>());
}
线程池的线程数可达到Integer.MAX_VALUE,即2147483647,内部使用SynchronousQueue作为阻塞队列; 和newFixedThreadPool创建的线程池不同,newCachedThreadPool在没有任务执行时,当线程的空闲时间超过keepAliveTime,会自动释放线程资源,当提交新任务时,如果没有空闲线程,则创建新线程执行任务,会导致一定的系统开销; 执行过程与前两种稍微不同:
遍历线程池中的所有线程,然后逐个调用线程的interrupt方法来中断线程.
关闭方式 - shutdown将线程池里的线程状态设置成SHUTDOWN状态, 然后中断所有没有正在执行任务的线程.
关闭方式 - shutdownNow将线程池里的线程状态设置成STOP状态, 然后停止所有正在执行或暂停任务的线程. 只要调用这两个关闭方法中的任意一个, isShutDown() 返回true. 当所有任务都成功关闭了, isTerminated()返回true.
ThreadPoolExecutor源码详解几个关键属性//这个属性是用来存放 当前运行的worker数量以及线程池状态的
//int是32位的,这里把int的高3位拿来充当线程池状态的标志位,后29位拿来充当当前运行worker的数量
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
//存放任务的阻塞队列
private final BlockingQueue<Runnable> workQueue;
//worker的集合,用set来存放
private final HashSet<Worker> workers = new HashSet<Worker>();
//历史达到的worker数最大值
private int largestPoolSize;
//当队列满了并且worker的数量达到maxSize的时候,执行具体的拒绝策略
private volatile RejectedExecutionHandler handler;
//超出coreSize的worker的生存时间
private volatile long keepAliveTime;
//常驻worker的数量
private volatile int corePoolSize;
//最大worker的数量,一般当workQueue满了才会用到这个参数
private volatile int maximumPoolSize;
内部状态
private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
private static final int COUNT_BITS = Integer.SIZE - 3;
private static final int CAPACITY = (1 << COUNT_BITS) - 1;
// runState is stored in the high-order bits
private static final int RUNNING = -1 << COUNT_BITS;
private static final int SHUTDOWN = 0 << COUNT_BITS;
private static final int STOP = 1 << COUNT_BITS;
private static final int TIDYING = 2 << COUNT_BITS;
private static final int TERMINATED = 3 << COUNT_BITS;
// Packing and unpacking ctl
private static int runStateOf(int c) { return c & ~CAPACITY; }
private static int workerCountOf(int c) { return c & CAPACITY; }
private static int ctlOf(int rs, int wc) { return rs | wc; }
其中AtomicInteger变量ctl的功能非常强大: 利用低29位表示线程池中线程数,通过高3位表示线程池的运行状态:
execute –> addWorker –>runworker (getTask)
线程池的工作线程通过Woker类实现,在ReentrantLock锁的保证下,把Woker实例插入到HashSet后,并启动Woker中的线程。 从Woker类的构造方法实现可以发现: 线程工厂在创建线程thread时,将Woker实例本身this作为参数传入,当执行start方法启动线程thread时,本质是执行了Worker的runWorker方法。 firstTask执行完成之后,通过getTask方法从阻塞队列中获取等待的任务,如果队列中没有任务,getTask方法会被阻塞并挂起,不会占用cpu资源;
execute()方法ThreadPoolExecutor.execute(task)实现了Executor.execute(task)
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
/*
* Proceed in 3 steps:
*
* 1. If fewer than corePoolSize threads are running, try to
* start a new thread with the given command as its first
* task. The call to addWorker atomically checks runState and
* workerCount, and so prevents false alarms that would add
* threads when it shouldn't, by returning false.
*
* 2. If a task can be successfully queued, then we still need
* to double-check whether we should have added a thread
* (because existing ones died since last checking) or that
* the pool shut down since entry into this method. So we
* recheck state and if necessary roll back the enqueuing if
* stopped, or start a new thread if there are none.
*
* 3. If we cannot queue task, then we try to add a new
* thread. If it fails, we know we are shut down or saturated
* and so reject the task.
*/
int c = ctl.get();
if (workerCountOf(c) < corePoolSize) {
//workerCountOf获取线程池的当前线程数;小于corePoolSize,执行addWorker创建新线程执行command任务
if (addWorker(command, true))
return;
c = ctl.get();
}
// double check: c, recheck
// 线程池处于RUNNING状态,把提交的任务成功放入阻塞队列中
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
// recheck and if necessary 回滚到入队操作前,即倘若线程池shutdown状态,就remove(command)
//如果线程池没有RUNNING,成功从阻塞队列中删除任务,执行reject方法处理任务
if (! isRunning(recheck) && remove(command))
reject(command);
//线程池处于running状态,但是没有线程,则创建线程
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
// 往线程池中创建新的线程失败,则reject任务
else if (!addWorker(command, false))
reject(command);
}
在多线程环境下,线程池的状态时刻在变化,而ctl.get()是非原子操作,很有可能刚获取了线程池状态后线程池状态就改变了。判断是否将command加入workque是线程池之前的状态。倘若没有double check,万一线程池处于非running状态(在多线程环境下很有可能发生),那么command永远不会执行。
addWorker方法从方法execute的实现可以看出: addWorker主要负责创建新的线程并执行任务 线程池创建新线程执行任务时,需要 获取全局锁:
private final ReentrantLock mainLock = new ReentrantLock();
private boolean addWorker(Runnable firstTask, boolean core) {
// CAS更新线程池数量
retry:
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN &&
! (rs == SHUTDOWN &&
firstTask == null &&
! workQueue.isEmpty()))
return false;
for (;;) {
int wc = workerCountOf(c);
if (wc >= CAPACITY ||
wc >= (core ? corePoolSize : maximumPoolSize))
return false;
if (compareAndIncrementWorkerCount(c))
break retry;
c = ctl.get(); // Re-read ctl
if (runStateOf(c) != rs)
continue retry;
// else CAS failed due to workerCount change; retry inner loop
}
}
boolean workerStarted = false;
boolean workerAdded = false;
Worker w = null;
try {
w = new Worker(firstTask);
final Thread t = w.thread;
if (t != null) {
// 线程池重入锁
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
// Recheck while holding lock.
// Back out on ThreadFactory failure or if
// shut down before lock acquired.
int rs = runStateOf(ctl.get());
if (rs < SHUTDOWN ||
(rs == SHUTDOWN && firstTask == null)) {
if (t.isAlive()) // precheck that t is startable
throw new IllegalThreadStateException();
workers.add(w);
int s = workers.size();
if (s > largestPoolSize)
largestPoolSize = s;
workerAdded = true;
}
} finally {
mainLock.unlock();
}
if (workerAdded) {
t.start(); // 线程启动,执行任务(Worker.thread(firstTask).start());
workerStarted = true;
}
}
} finally {
if (! workerStarted)
addWorkerFailed(w);
}
return workerStarted;
}
Worker类的runworker方法
private final class Worker extends AbstractQueuedSynchronizer implements Runnable{
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
this.thread = getThreadFactory().newThread(this); // 创建线程
}
/** Delegates main run loop to outer runWorker */
public void run() {
runWorker(this);
}
// ...
}
一些属性还有构造方法:
//运行的线程,前面addWorker方法中就是直接通过启动这个线程来启动这个worker
final Thread thread;
//当一个worker刚创建的时候,就先尝试执行这个任务
Runnable firstTask;
//记录完成任务的数量
volatile long completedTasks;
Worker(Runnable firstTask) {
setState(-1); // inhibit interrupts until runWorker
this.firstTask = firstTask;
//创建一个Thread,将自己设置给他,后面这个thread启动的时候,也就是执行worker的run方法
this.thread = getThreadFactory().newThread(this);
}
runWorker方法是线程池的核心:
通过getTask方法从阻塞队列中获取等待的任务,如果队列中没有任务,getTask方法会被阻塞并挂起,不会占用cpu资源;
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
// 先执行firstTask,再从workerQueue中取task(getTask())
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks ;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
getTask方法
下面来看一下getTask()方法,这里面涉及到keepAliveTime的使用,从这个方法我们可以看出线程池是怎么让超过corePoolSize的那部分worker销毁的。
private Runnable getTask() {
boolean timedOut = false; // Did the last poll() time out?
for (;;) {
int c = ctl.get();
int rs = runStateOf(c);
// Check if queue empty only if necessary.
if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
decrementWorkerCount();
return null;
}
int wc = workerCountOf(c);
// Are workers subject to culling?
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
if ((wc > maximumPoolSize || (timed && timedOut))
&& (wc > 1 || workQueue.isEmpty())) {
if (compareAndDecrementWorkerCount(c))
return null;
continue;
}
try {
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
if (r != null)
return r;
timedOut = true;
} catch (InterruptedException retry) {
timedOut = false;
}
}
}
注意这里一段代码是keepAliveTime起作用的关键:
boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
Runnable r = timed ?
workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
workQueue.take();
allowCoreThreadTimeOut为false,线程即使空闲也不会被销毁;倘若为ture,在keepAliveTime内仍空闲则会被销毁。
如果线程允许空闲等待而不被销毁timed == false,workQueue.take任务: 如果阻塞队列为空,当前线程会被挂起等待;当队列中有任务加入时,线程被唤醒,take方法返回任务,并执行;
如果线程不允许无休止空闲timed == true, workQueue.poll任务: 如果在keepAliveTime时间内,阻塞队列还是没有任务,则返回null;
任务的提交public class Test{
public static void main(String[] args) {
ExecutorService es = Executors.newCachedThreadPool();
Future<String> future = es.submit(new Callable<String>() {
@Override
public String call() throws Exception {
try {
TimeUnit.SECONDS.sleep(2);
} catch (InterruptedException e) {
e.printStackTrace();
}
return "future result";
}
});
try {
String result = future.get();
System.out.println(result);
} catch (Exception e) {
e.printStackTrace();
}
}
}
在实际业务场景中,Future和Callable基本是成对出现的,Callable负责产生结果,Future负责获取结果。
AbstractExecutorService.submit()实现了ExecutorService.submit() 可以获取执行完的返回值, 而ThreadPoolExecutor 是AbstractExecutorService.submit()的子类,所以submit方法也是ThreadPoolExecutor`的方法。
// submit()在ExecutorService中的定义
<T> Future<T> submit(Callable<T> task);
<T> Future<T> submit(Runnable task, T result);
Future<?> submit(Runnable task);
// submit方法在AbstractExecutorService中的实现
public Future<?> submit(Runnable task) {
if (task == null) throw new NullPointerException();
// 通过submit方法提交的Callable任务会被封装成了一个FutureTask对象。
RunnableFuture<Void> ftask = newTaskFor(task, null);
execute(ftask);
return ftask;
}
通过submit方法提交的Callable任务会被封装成了一个FutureTask对象。通过Executor.execute方法提交FutureTask到线程池中等待被执行,最终执行的是FutureTask的run方法;
FutureTask对象public class FutureTask<V> implements RunnableFuture<V> 可以将FutureTask提交至线程池中等待被执行(通过FutureTask的run方法来执行)
/* The run state of this task, initially NEW.
* ...
* Possible state transitions:
* NEW -> COMPLETING -> NORMAL
* NEW -> COMPLETING -> EXCEPTIONAL
* NEW -> CANCELLED
* NEW -> INTERRUPTING -> INTERRUPTED
*/
private volatile int state;
private static final int NEW = 0;
private static final int COMPLETING = 1;
private static final int NORMAL = 2;
private static final int EXCEPTIONAL = 3;
private static final int CANCELLED = 4;
private static final int INTERRUPTING = 5;
private static final int INTERRUPTED = 6;
内部状态的修改通过sun.misc.Unsafe修改
public V get() throws InterruptedException, ExecutionException {
int s = state;
if (s <= COMPLETING)
s = awaitDone(false, 0L);
return report(s);
}
内部通过awaitDone方法对主线程进行阻塞,具体实现如下:
private int awaitDone(boolean timed, long nanos)
throws InterruptedException {
final long deadline = timed ? System.nanoTime() nanos : 0L;
WaitNode q = null;
boolean queued = false;
for (;;) {
if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
}
int s = state;
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
}
else if (s == COMPLETING) // cannot time out yet
Thread.yield();
else if (q == null)
q = new WaitNode();
else if (!queued)
queued = UNSAFE.compareAndSwapObject(this, waitersOffset,q.next = waiters, q);
else if (timed) {
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removeWaiter(q);
return state;
}
LockSupport.parkNanos(this, nanos);
}
else
LockSupport.park(this);
}
}
如果主线程被中断,则抛出中断异常;
run方法
public void run() {
if (state != NEW || !UNSAFE.compareAndSwapObject(this, runnerOffset, null, Thread.currentThread()))
return;
try {
Callable<V> c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
if (ran)
set(result);
}
} finally {
// runner must be non-null until state is settled to
// prevent concurrent calls to run()
runner = null;
// state must be re-read after nulling runner to prevent
// leaked interrupts
int s = state;
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}
FutureTask.run方法是在线程池中被执行的,而非主线程
shutdown方法会将线程池的状态设置为SHUTDOWN,线程池进入这个状态后,就拒绝再接受任务,然后会将剩余的任务全部执行完
public void shutdown() {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
//检查是否可以关闭线程
checkShutdownAccess();
//设置线程池状态
advanceRunState(SHUTDOWN);
//尝试中断worker
interruptIdleWorkers();
//预留方法,留给子类实现
onShutdown(); // hook for ScheduledThreadPoolExecutor
} finally {
mainLock.unlock();
}
tryTerminate();
}
private void interruptIdleWorkers() {
interruptIdleWorkers(false);
}
private void interruptIdleWorkers(boolean onlyOne) {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
//遍历所有的worker
for (Worker w : workers) {
Thread t = w.thread;
//先尝试调用w.tryLock(),如果获取到锁,就说明worker是空闲的,就可以直接中断它
//注意的是,worker自己本身实现了AQS同步框架,然后实现的类似锁的功能
//它实现的锁是不可重入的,所以如果worker在执行任务的时候,会先进行加锁,这里tryLock()就会返回false
if (!t.isInterrupted() && w.tryLock()) {
try {
t.interrupt();
} catch (SecurityException ignore) {
} finally {
w.unlock();
}
}
if (onlyOne)
break;
}
} finally {
mainLock.unlock();
}
}
shutdownNow做的比较绝,它先将线程池状态设置为STOP,然后拒绝所有提交的任务。最后中断左右正在运行中的worker,然后清空任务队列。
public List<Runnable> shutdownNow() {
List<Runnable> tasks;
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
checkShutdownAccess();
//检测权限
advanceRunState(STOP);
//中断所有的worker
interruptWorkers();
//清空任务队列
tasks = drainQueue();
} finally {
mainLock.unlock();
}
tryTerminate();
return tasks;
}
private void interruptWorkers() {
final ReentrantLock mainLock = this.mainLock;
mainLock.lock();
try {
//遍历所有worker,然后调用中断方法
for (Worker w : workers)
w.interruptIfStarted();
} finally {
mainLock.unlock();
}
}
更深入理解
为什么线程池不允许使用Executors去创建? 推荐方式是什么?线程池不允许使用Executors去创建,而是通过ThreadPoolExecutor的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险。 说明:Executors各个方法的弊端:
首先引入:commons-lang3包
ScheduledExecutorService executorService = new ScheduledThreadPoolExecutor(1,
new BasicThreadFactory.Builder().namingPattern("example-schedule-pool-%d").daemon(true).build());
推荐方式 2
首先引入:com.google.guava包
ThreadFactory namedThreadFactory = new ThreadFactoryBuilder().setNameFormat("demo-pool-%d").build();
//Common Thread Pool
ExecutorService pool = new ThreadPoolExecutor(5, 200, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>(1024), namedThreadFactory, new ThreadPoolExecutor.AbortPolicy());
// excute
pool.execute(()-> System.out.println(Thread.currentThread().getName()));
//gracefully shutdown
pool.shutdown();
推荐方式 3
spring配置线程池方式:自定义线程工厂bean需要实现ThreadFactory,可参考该接口的其它默认实现类,使用方式直接注入bean调用execute(Runnable task)方法即可
<bean id="userThreadPool" class="org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor">
<property name="corePoolSize" value="10" />
<property name="maxPoolSize" value="100" />
<property name="queueCapacity" value="2000" />
<property name="threadFactory" value= threadFactory />
<property name="rejectedExecutionHandler">
<ref local="rejectedExecutionHandler" />
</property>
</bean>
//in code
userThreadPool.execute(thread);
配置线程池需要考虑因素
从任务的优先级,任务的执行时间长短,任务的性质(CPU密集/ IO密集),任务的依赖关系这四个角度来分析。并且近可能地使用有界的工作队列。
性质不同的任务可用使用不同规模的线程池分开处理:
可以使用ThreadPoolExecutor以下方法:
点击下方,第一时间了解华为云新鲜技术~
Copyright © 2024 妖气游戏网 www.17u1u.com All Rights Reserved