来源:锂电派
(原标题:技术问答丨几个你一定想知道答案的锂电池生产技术问题!)
1
锂离子电池制片过程掉粉的分析与讨论
极片掉粉目前钴酸锂的生产工艺,基本上不会掉粉,掉粉的可能性在生产过程中影响的因素有:
2
电池不良项目及成因
1.容量低
产生原因:
a. 附料量偏少;
b. 极片两面附料量相差较大;
c. 极片断裂;
d. 电解液少;
e. 电解液电导率低;
f. 正极与负极配片未配好;
g. 隔膜孔隙率小;
h. 胶粘剂老化→附料脱落;
i. 卷芯超厚(未烘干或电解液未渗透);
j. 分容时未充满电;
k. 正负极材料比容量小。
2.内阻高
产生原因:
a. 负极片与极耳虚焊;
b. 正极片与极耳虚焊;
c. 正极耳与盖帽虚焊;
d. 负极耳与壳虚焊;
e. 铆钉与压板接触内阻大;
f. 正极未加导电剂;
g. 电解液没有锂盐;
h. 电池曾经发生短路;
i. 隔膜纸孔隙率小。
3.电压低
产生原因:
a. 副反应(电解液分解;正极有杂质;有水);
b. 未化成好(SEI膜未形成安全);
c. 客户的线路板漏电(指客户加工后送回的电芯);
d. 客户未按要求点焊(客户加工后的电芯);
e. 毛刺;
f. 微短路;
g. 负极产生枝晶。
4.超厚
产生超厚的原因有以下几点:
a. 焊缝漏气;
b. 电解液分解;
c. 未烘干水分;
d. 盖帽密封性差;
e. 壳壁太厚;
f. 壳太厚;
g. 卷芯太厚(附料太多;极片未压实;隔膜太厚)。
5.成因有以下几点
a. 未化成好(SEI膜不完整、致密);
b. 烘烤温度过高→粘合剂老化→脱料;
c. 负极比容量低;
d. 正极附料多而负极附料少;
e. 盖帽漏气,焊缝漏气;
f. 电解液分解,电导率降低。
6.爆炸
a. 分容柜有故障(造成过充);
b. 隔膜闭合效应差;
c. 内部短路
7.短路
a. 料尘;
b. 装壳时装破;
c. 尺刮(小隔膜纸太小或未垫好);
d. 卷绕不齐;
e. 没包好;
f. 隔膜有洞;
g. 毛刺;
8.断路
a.极耳与铆钉未焊好,或者有效焊点面积小;
b.连接片断裂(连接片太短或与极片点焊时焊得太靠下)
3
锂离子电池的安全特性
锂离子电池已非常广泛的应用于人们的日常生活中,所以它的安全性能绝对应该是锂离子电池的第一项考核指标。对于锂离子电池安全性能的考核指标,国际上规定了非常严格的标准,一只合格的锂离子电池在安全性能上应该满足一下条件。
1)短路:不起火,不爆炸;
2)过充电:不起火,不爆炸;
3)热箱试验:不起火,不爆炸(150℃恒温10min)
4)针刺:不爆炸(用Φ3mm钉穿透电池);
5)平板冲击:不起火,不爆炸;(10kg重物自1米高处砸向电池);
6)焚烧:不爆炸(煤气火焰烧考电池)
为了确保锂离子电池安全可靠的使用,专家们进行了非常严格、周密的电池安全设计,以达到电池安全考核指标。
1)隔膜135℃自动关断保护:采用国际先进的Celgard2300PE-PP-PE三层复合膜。在电池升温达到120℃的情况下,复合膜两侧的PE膜孔闭合,电池内阻增大,电池内部形成大面积断路,电池不再升温。
2)电池盖复合结构:电池盖采用刻痕防爆结构,当电池升温,压力达到一定程度刻痕破裂、放气。
3)各种环境滥用试验:进行各项滥用试验,如外部短路、过充、针刺、平板冲击、焚烧等,考察电池的安全性能。同时对电池进行温度冲击试验和振动、跌落、冲击等力学性能试验,考察电池在实际使用环境下的性能情况。
4
锂离子电池保护线路(PCM)
锂离子电池至少需要三重保护-----过充电保护,过放电保护,短路保护,那么就应而产生了其保护线路,那么这个保护线路针对以上三个保护要求而言:
过充电保护: 过充电保护 IC 的原理为:当外部充电器对锂电池充电时,为防止因温度上升所导致的内压上升,需终止充电状态。此时,保护 IC 需检测电池电压,当到达 4.25V 时(假设电池过充点为 4.25V)即启动过度充电保护,将功率 MOS 由开转为切断,进而截止充电。
过放电保护:过放电保护 IC 原理:为了防止锂电池的过放电,假设锂电池接上负载,当锂电池电压低于其过放电电压检测点(假定为 2.5V)时将启动过放电保护,使功率 MOSFET 由开转变为切断而截止放电,以避免电池过放电现象产生,并将电池保持在低静态电流的待机模式,此时的电流仅 0.1uA。当锂电池接上充电器,且此时锂电池电压高于过度放电电压时,过度放电保护功能方可解除。另外,考虑到脉冲放电的情况,过放电检测电路设有延迟时间。
5
锂离子电池低容原因分析
1、压实密度大;
2、极片附粉少;
3、断片;
4、电解液量少;
5、化成不完全;
6、检测容量充放电不完全;
7、潮湿度高(吸水);
8、电池储存久;
9、材料的比容量低;
10、极片虚焊,极耳虚焊;
11、制成过程中的环境控制如:温度、湿度........
12、完善中.........
6
电芯膨胀原因及控制
锂离子电芯在制造和使用过程中往往会有肿胀现象,经过分析与研究,发现主要有以下两方面原因:
1.锂离子嵌入带来的厚度变化
电芯充电时锂离子从正极脱出嵌入负极,引起负极层间距增大,而出现膨胀,一般而言,电芯越厚,其膨胀量越大。
2.工艺控制不力引起的膨胀
在制造过程中,如浆料分散、C/A比离散性、温度控制都会直接影响电芯电芯的膨胀程度。特别是水,因为充电形成的高活性锂碳化合物对水非常敏感,从而发生激烈的化学反应。反应产生的气体造成电芯内压升高,增加了电芯的膨胀行为。所以在生产中,除了应对极板严格除湿外,在注液过程中更应采用除湿设备,保证空气的干燥度为HR2%,**(大气中的湿空气由于温度下降,使所含的水蒸气达到饱和状态而开始凝结时的温度)小于-40℃。在非常干燥的条件下,并采取真空注液,极大地降低了极板和电解液的吸水机率。
7
锂离子电池正、负极活性材内为何要加VGCF碳管?
1、不管正或负极活性材都会有膨胀收缩的问题,一般负极碳材有20%膨胀收缩率,而像LFP正极材料有6%膨胀收收率。当多次充放电中,其正、负活性材颗粒与颗粒之间接触少、间隙加大,甚至有些脱离集电极,导致电子与离子传输路径断续不连续相,成为死的活性材,不再参与电极反应。因此循环使用寿命下降。VGCF碳管有很大的长径比,即使正、负活性材膨胀收缩后,其活性材颗粒间之间隙,可藉由VGCF碳管架桥连接,电子与离子传输不会间断。
2、由于VGCF碳管微结构是中空多管壁,可以让正、负电极吸纳更多的电解液,使得锂离子可以顺利快速嵌入或脱嵌,因此,有利于高倍率充放电。
3. VGCF是高强度纤维状长径比大之材料,可增加电极板的可挠性,正极或负极活性材颗粒间之黏接力或与极板间之黏接力更强,不会因挠曲而龟裂掉粉。
4.VGCF本质是高导电高导热特性,正极活性材其导电性都不好,添加VGCF以提高正极活性材的导电性,也提高正极或负极的导热系数,利于散热。
8
解剖电池时遇到些情况,下面罗列出来,不知道各位前辈对这些情况有何见解:
1.明明很容易断的正极片注液以后却变得柔软?
2.正极片出现褶皱现象(内层)?
3.刚拆出来的负极片边缘和内层会是暗紫色,和极片中间部分颜色不一样(中间是金黄色)?
4.为什么每次拆开的负极片头部(第一小片)会有很多白色物质,是不是锂,为什么在那里这么多?
5.为什么短路以后正极片上面有铜,是不是负极的铜被电解过来,而且为什么是在正极头部吸铜最多;
6.负极耳发黑,是不是短路现象(大电流通过的遗迹)或者是负极石墨溶解?
7.观察正极料过量,是不是在负极片上滴水,看是否燃火。
答案搜索:(声明没有标准答案,以现场为主)
第一:极片充放电后已经反弹,肯定变软,通俗点,没那么死了,里面松了;
第二:那个是正常的~前面几圈卷饶时贴近卷针,肯定有折痕...除非你用非常厚的针,呵呵,这个不可能哦
第三:没充电灰色,半充暗紫色,满充金黄,那种情况自己想,提示:浸润程度;
第四:负极片头部(第一小片)会有很多白色物质,其他地方要是没有,就是你设计问题,是析锂;
第五:这个问题不清楚,不知道你那什么情况,是不是反充了,是整体还是部分,也有可能短路;
第六:负极耳发黑,看情况了,一般是短路;
第七:滴水谁给你教的?没听过;正极料过量,负极很明显的,当然你要排除外因。
9
补充几点:
1.隔膜局部发黄或有黑点,是否曾经大电流通过,击穿隔膜,短路造成,可能是粉尘,也可能是你隔膜本来有孔,当然也有材料方面的可能;
2.在电池外包装时,点焊铆钉时电流不稳定或电流过大会使外露负极耳旁的隔膜烧坏,但高温胶是否会被烧掉。
这个还没见过,一般点焊是瞬间的,能量大到可以烧化里面的隔膜还真没见过,高温胶只是奈温高点,你要是有个1000度一样完蛋,爆炸的电池你可以看看,高温胶纸也成灰了。
Copyright © 2024 妖气游戏网 www.17u1u.com All Rights Reserved