分享一则sql优化案例:生产数据库从385s优化到16.8s

分享一则sql优化案例:生产数据库从385s优化到16.8s

首页枪战射击Project T3更新时间:2024-04-29
概述

这条sql是典型的在数据量增加的情况下,mysql数据库自动选择了另一个执行计划,这里只要通过改写sql来实现该sql的优化,仅供参考。


1、定位慢sql

至于怎么获取到该问题sql,实际上只需要跑一下慢查询查一下就可以看到了..

有兴趣的朋友也可以看下之前介绍的慢查询平台来获取慢sql...

pt-query-digest slow.log --since '2021-01-28 00:00:00' --until '2021-01-28 23:59:00' > /tmp/tms-slow.log


2、分析问题sql

可以看出只是查询一条记录但耗时385秒

SELECT DISTINCT t1.id, t1.shipment_no, t1.vehicle_no, t1.driver1_name, DATE_FORMAT( t1.latest_pickup_time, '%Y-%m-%d' ) AS latest_pickup_date, DATE_FORMAT( t1.latest_pickup_time, '%H:%i' ) AS latest_pickup, t1.latest_pickup_time, t1.version, t1.domain_name, t1.insert_user FROM fsl_shipment t1 LEFT JOIN fsl_order_movement_unit t2 ON t1.id = t2.shipment LEFT JOIN fsl_order_release t3 ON t2.order_release = t3.id WHERE t1.project_code = 'xx' AND t1.shipment_no IS NOT NULL AND t1.shipment_status IN ( 'xx', 'xx' ) AND t1.is_a_shipment = 'N' AND t1.sendncicflag IS NULL AND t3.customer = '3xxx6' AND t1.custom_type IN ( 'xx','xx')

对应的执行计划如下:

对应的表数据量情况如下:


3、业测环境测试

这里要说一下为什么在业测环境之所以只需要0.7s,其实是因为生产环境的t3表customer结果集比较大,导致先筛选t1表,在筛选t2表,最后筛选t3表,导致耗时接近400s;而UAT环境的t3表customer结果集小时则先筛选t3表,最后再筛选t1表,速度在1秒内。


4、改写sql优化

这里耗时16s。

SELECT DISTINCT t1.id, t1.shipment_no, t1.vehicle_no, t1.driver1_name, DATE_FORMAT( t1.latest_pickup_time, '%Y-%m-%d' ) AS latest_pickup_date, DATE_FORMAT( t1.latest_pickup_time, '%H:%i' ) AS latest_pickup, t1.latest_pickup_time, t1.version, t1.domain_name, t1.insert_user FROM fsl_shipment t1 LEFT JOIN fsl_order_movement_unit t2 ON t1.id = t2.shipment LEFT JOIN (select id from fsl_order_release where customer = 'xxx') t3 ON t2.order_release = t3.id WHERE t1.project_code = 'DD' AND t1.shipment_no IS NOT NULL AND t1.shipment_status IN ( '18', '20' ) AND t1.is_a_shipment = 'N' AND t1.sendncicflag IS NULL AND t1.custom_type IN ('0','4');

对应的执行计划如下;


后面会分享更多devops和DBA方面内容,感兴趣的朋友可以关注下!

,
大家还看了
也许喜欢
更多游戏

Copyright © 2024 妖气游戏网 www.17u1u.com All Rights Reserved