1、思考问题?(答案:Linux操作系统原理)
当内存不足时,我们如何进行分配?当操作系统运行时候太长,产生很多很多内存碎片,此时我们应该怎么办?如果我们想要分配几十个字节的小块内存,应该使用什么样的方法来解决此问题?我们如何提高系统分配物理内存的效率?
一、物理页面page结构
32位的CPU寻址时按照数据位宽(字word),但是CPU在处理物理内存时即不是按照字进行来分配,因为现在的CPU都采用页分配机制直接来管理内存。所以在CPU里面有一个叫MMU的硬件单元。它会处理虚拟内存到物理内存的映射关系,就是页表的翻译工作。我们站在CPU的角度来分析,管理物理内存的最小单位为页,Linux内核使用一个struct page数据结构描述一个物理页面。struct page数据结构在内核源码分析当中我们可以得到答案。
掌握Linux内核源码分析技术(优势):Linux内核开发工程师。page数据结构对应Linux内核源码如下:
struct page { // 专门用来描述一个物理页面
/* First double word block */
unsigned long flags; // flags此成员是页面的标志位集合,标志位pageflags结构体类型
union {
/*
mapping此成员,当这个页被用于文件缓存时,mapping指向和这个文件缓存相关联的address_space对象,
这个address_space对象是属于内存对象(比如索引节点)的页面集合。当这个页面用于匿名页面时,mapping指向一个
anon_vma数据结构,主要用于反向映射。
*/
struct address_space *mapping;
void *s_mem; /* slab first object */
};
/* Second double word */
struct {
union {
pgoff_t index; /* Our offset within mapping. */
void *freelist; /* sl[aou]b first free object */
bool pfmemalloc; /* If set by the page allocator,
* ALLOC_NO_WATERMARKS was set
* and the low watermark was not
* met implying that the system
* is under some pressure. The
* caller should try ensure
* this page is only used to
* free other pages.
*/
};
union {
#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
/* Used for cmpxchg_double in slub */
unsigned long counters;
#else
/*
* Keep _count separate from slub cmpxchg_double data.
* As the rest of the double word is protected by
* slab_lock but _count is not.
*/
unsigned counters;
#endif
struct {
union {
/*
* Count of ptes mapped in
* mms, to show when page is
* mapped & limit reverse map
* searches.
*
* Used also for tail pages
* refcounting instead of
* _count. Tail pages cannot
* be mapped and keeping the
* tail page _count zero at
* all times guarantees
* get_page_unless_zero() will
* never succeed on tail
* pages.
*/
atomic_t _mapcount;
struct { /* SLUB */
unsigned inuse:16;
unsigned objects:15;
unsigned frozen:1;
};
int units; /* SLOB */
};
atomic_t _count; /* Usage count, see below. */
};
/*【_count和_mapcount是struct page数据结构中最重要的两个引用计数】
1、_count表示内核中引用该页面的次数,当_count的值为0时,表示page页面为空闲或即将要被释放的页面。当_count的值大于0
时,表示此page页面已被分配且内核正在使用,暂时不会被释放。内核中常用的加减_count引用计数的API:get_page()
put_page page_cache_get()等
2、_mapcount引用计数表示这个页面被进程映射的个数,即已经映射多少个用户pte页表。在32位Linux内核中,每个用户进程都
拥有3GB的虚拟空间和一份独立的页表。_mapcount引用计数主要用于RMAP反向映射机制中。_mapcount等于-1,表示没有pte映射到
页面当中,_mapcount等于0,表示只有父进程映射到页面。匿名页面刚分配时,_mapcount引用计数初始化为0.
*/
unsigned int active; /* SLAB */
};
};
/* Third double word block */
union {
/*
lru此成员主要用于在页面回收的LRU链表算法。
*/
struct list_head lru;
struct { /* slub per cpu partial pages */
struct page *next; /* Next partial slab */
#ifdef CONFIG_64BIT
int pages; /* Nr of partial slabs left */
int pobjects; /* Approximate # of objects */
#else
short int pages;
short int pobjects;
#endif
};
struct slab *slab_page; /* slab fields */
struct rcu_head rcu_head; /* Used by SLAB
* when destroying via RCU
*/
/* First tail page of compound page */
struct {
compound_page_dtor *compound_dtor;
unsigned long compound_order;
};
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && USE_SPLIT_PMD_PTLOCKS
pgtable_t pmd_huge_pte; /* protected by page->ptl */
#endif
};
/* Remainder is not double word aligned */
union {
unsigned long private; /* Mapping-private opaque data:
* usually used for buffer_heads
* if PagePrivate set; used for
* swp_entry_t if PageSwapCache;
* indicates order in the buddy
* system if PG_buddy is set.
*/
#if USE_SPLIT_PTE_PTLOCKS
#if ALLOC_SPLIT_PTLOCKS
spinlock_t *ptl;
#else
spinlock_t ptl;
#endif
#endif
struct kmem_cache *slab_cache; /* SL[AU]B: Pointer to slab */
struct page *first_page; /* Compound tail pages */
};
#ifdef CONFIG_MEMCG
struct mem_cgroup *mem_cgroup;
#endif
/*
* On machines where all RAM is mapped into kernel address space,
* we can simply calculate the virtual address. On machines with
* highmem some memory is mapped into kernel virtual memory
* dynamically, so we need a place to store that address.
* Note that this field could be 16 bits on x86 ... ;)
*
* Architectures with slow multiplication can define
* WANT_PAGE_VIRTUAL in asm/page.h
*/
#if defined(WANT_PAGE_VIRTUAL)
/*virtual此成员是一个指向页所对应的虚拟地址的指针。 */
void *virtual; // 只有需要时才使用,动态映射高端内存页面
#endif /* WANT_PAGE_VIRTUAL */
#ifdef CONFIG_KMEMCHECK
/*
* kmemcheck wants to track the status of each byte in a page; this
* is a pointer to such a status block. NULL if not tracked.
*/
void *shadow;
#endif
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
int _last_cpupid;
#endif
}
enum pageflags {
PG_locked, /* 页面已经上锁,不要访问 */
PG_error, // 表示页面发生了I/O错误
PG_referenced, // 此标志位用来实现LRU算法中第二次机会法
PG_uptodate, // 标示页面内容是有效的,当该页面上读操作完成之后,设置该标志位
PG_dirty, // 表示页面内容被修改过,为脏页
PG_lru, // 表示该页在LRU链表中
PG_active, // 表示该页在活跃LRU链表中
PG_slab, // 表示页属于由slab分配器创建的slab
PG_owner_priv_1, /* 页面的所有者使用,如果是pagecache页面,文件系统可能使用*/
PG_arch_1, // 与体系结构相关的页面状态位
PG_reserved, // 表示页不可被换出
PG_private, /* 表示该页是有效的,当page->private包含有效值时会设置此标志位,如果是pagecache,那么包含一个文件系统相关的数据信息 */
PG_private_2, /* 如果是pagecache,可能包含 FS aux data */
PG_writeback, /* 页面正在回写 */
#ifdef CONFIG_PAGEFLAGS_EXTENDED
PG_head, /* A head page */
PG_tail, /* A tail page */
#else
PG_compound, /* 一个混合页面 */
#endif
PG_swapcache, /* 交换页面*/
PG_mappedtodisk, /* 在磁盘中分配blocks */
PG_reclaim, /* 立刻要被回收 */
PG_swapbacked, /* 页面是不可回收的 */
PG_unevictable, /* Page is "unevictable" */
#ifdef CONFIG_MMU
PG_mlocked, // VMA处于mlocked状态
#endif
#ifdef CONFIG_ARCH_USES_PG_UNCACHED
PG_uncached, /* Page has been mapped as uncached */
#endif
#ifdef CONFIG_MEMORY_FAILURE
PG_hwpoison, /* hardware poisoned page. Don't touch */
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
PG_compound_lock,
#endif
__NR_PAGEFLAGS,
/* Filesystems */
PG_checked = PG_owner_priv_1,
/* Two page bits are conscripted by FS-Cache to maintain local caching
* state. These bits are set on pages belonging to the netfs's inodes
* when those inodes are being locally cached.
*/
PG_fscache = PG_private_2, /* page backed by cache */
/* XEN */
/* Pinned in Xen as a read-only pagetable page. */
PG_pinned = PG_owner_priv_1,
/* Pinned as part of domain save (see xen_mm_pin_all()). */
PG_savepinned = PG_dirty,
/* Has a grant mapping of another (foreign) domain's page. */
PG_foreign = PG_owner_priv_1,
/* SLOB */
PG_slob_free = PG_private,
};
Linux内核为每个物理页面分配一个page数据结构,采用mem_map[]数组形式来存储这些page数据结构,并且它们和物理页面是一对一映射关系。struct page数据结构和物理页面对应关系视图如下:
page数据结构大小通常几十个字节,而且一个物理页面是4096字节,假设page数据占用40字节?
Copyright © 2024 妖气游戏网 www.17u1u.com All Rights Reserved