深度强化学习从入门到大师:通过Q学习进行强化学习(第二部分)

深度强化学习从入门到大师:通过Q学习进行强化学习(第二部分)

首页休闲益智吃豆人机械城堡更新时间:2024-06-23

本文为 AI 研习社编译的技术博客,原标题 :

Diving deeper into Reinforcement Learning with Q-Learning

作者 | Thomas Simonini

翻译 | 斯蒂芬•二狗子

校对 | 斯蒂芬•二狗子 审核 | 酱番梨 整理 | 菠萝妹

原文链接:

https://medium.freecodecamp.org/diving-deeper-into-reinforcement-learning-with-q-learning-c18d0db58efe

深度强化学习从入门到大师:通过Q学习进行强化学习(第二部分)

本文是 Tensorflow 深度强化学习课程的一部分。?️点击这里查看教学大纲。

今天我们将学习 Q-Learning。 Q-Learning 是一种基于数值的强化学习算法。

本文是关于深度强化学习的免费系列博客文章的第二部分。有关更多信息和更多资源,请查看 课程的教学大纲。 请参阅 此处的第一篇文章。

在本文中,您将学习:

大图:骑士和公主

假设你是一名骑士,你需要拯救被困在上面地图上所示城堡中的公主。

您可以一次移动一个图块。敌人不能移动,但是骑士和敌人落在同一块地砖上就会死。目标是使骑士尽可能以最快的路线前往城堡。这可以使用“积分”系统来评估。

骑士每走一步都减去1分 (使用每一步-1策略有助于我们的Agent快速到达终点)。

这里的第一个策略:让 Agent 不断尝试移动到每个瓷砖上,然后为每个瓷砖着色。绿色表示“安全”,红色表示“不安全”。

相同的地图,但着色显示哪些瓷砖可以安全访问

然后,我们可以告诉 Agent 只在绿色瓷砖上移动。

但问题是这样做并没有对问题有帮助。当绿色瓷砖彼此相邻时,我们无法分辨哪个瓷砖更好。所以 Agent 在试图找到城堡过程会因此陷入死循环!

介绍Q表

这是第二个策略:创建一个表格,我们将计算每种状态 state 下采取的每种行动 action的最大的未来预期奖励。

多亏了这个策略,我们将知道对每种状态采取的最佳行动是什么。

每个 state(瓷砖片)允许四种可能的动作。它们分别是向左,向右,向上或向下移动。

0表示不可以执行的动作(如果你在左上角你不能向左或向上!)

在计算方面,我们可以将此网格转换为表格。

这个表格被称为 Q 表(“Q”表示动作的“质量”)。列表示是四个动作(左,右,上,下)。行表示的是状态。每个单元格的值将是该给定状态和行动的最大未来预期奖励。

如果在 state 状态下给定的行动 action 是最佳策略,那么每个 Q 表评分为未来奖励的最大期望。

为什么我们说“根据策略给出?”这是因为我们不能直接给出这种策略。而是通过改进我们的 Q 表以始终选择最佳行动 action。

可以把这个 Q-table 认为是一个游戏的“备忘单”。通过找到“备忘单”行中的最高分,我们知道每个状态(Q 表中的每一行)最好的行动是什么。

Yeah!我们解决了城堡问题!但是等等......我们如何计算 Q 表中每个元素的值?

要给出此 Q 表的每个值,可以使用 Q-learning 算法。

Q学习算法:学习动作值函数

动作值函数(或“ Q 函数”)有两个输入:“状态”和“动作”。它返回该动作在该状态下的预期未来奖励。

我们可以把这个 Q 函数作为一个阅读指南,通过滚动 Q 表找到与我们的状态相关的行,以及与我们的动作相关联的列。它返回匹配的 Q 值。这个值就是“预期的未来奖励”。

在我们探索环境之前,Q 表中的值是固定的初始值(一般为0)。在我们探索环境时,通过使用Bellman方程迭代更新Q(s,a),Q 表中的值将趋近于更好(见下文!)。

Q学习算法过程

Q-Learning算法的伪代码

步骤1:初始化Q值

我们构建一个Q表,有 m 列 (m = 行动数)和 n 行(n =状态数)。我们将值初始化为0。

第2步:终身学习(或直到学习停止)

该过程将重复步骤3到5,直到算法运行次数为的 episode 的最大值(由用户指定)或直到我们手动停止训练。

步骤3:选择操作

根据当前的Q值 选择 当前状态下行动 Action a。

但是......如果每个Q值都是零,那么在该采取什么行动?

这就是我们在上一篇文章中谈到的探索/使用权衡的重要性。

我们的想法是,在开始时,我们将使用epsilon贪心策略:

步骤4-5:评估!

采取行动action a 并观察结果状态 s' 和奖励 r。 并更新函数Q(s,a)。

我们采取我们在步骤3中选择的操作,然后执行此操作将返回一个新的状态s'和奖励r(正如我们在第一篇文章中的看到的强化学习过程那样)。

然后,使用Bellman方程更新Q(s,a):

更新Q(state,action)代码可以写成如下所示:

New Q value =

Current Q value

lr * [Reward discount_rate * (highest Q value between possible actions from the new state s’ ) — Current Q value ]

我们来举个例子:

第1步:初始化Q表

初始化的Q表

步骤2:选择操作

从起始位置,您可以选择向右还是向下。我们有一个大的epsilon率(因为我们对环境一无所知),采用随机选择的方式。例如......向右移动。

我们采用随机移动(例如,右)

发现了一块奶酪( 1),则更新的Q值并记录向右的行动。通过Bellman方程来进行计算。

步骤4-5:更新Q函数

学习率可以看视为该学习网络更新Q值的速度。如果学习率为1,则新估计值将是新的Q值。

更新后的Q表

好!我们刚刚更新了我们的第一个Q值。现在我们需要一次又一次地这样做,直到学习停止。

实现Q学习算法

我们制作了一个视频,我们实现了一个学习与Numpy一起玩Taxi-v2的Q学习代理。

使用numpy和OpenAI Taxi-v2?进行Q学习(教程)

现在我们知道Q-Learning是如何工作的,我们将逐步实现Q学习算法。代码的每个部分在下面的Jupyter笔记本中都能找到。

您可以在Deep Reinforcement Learning Course repo中访问它 。

或者您可以直接在Google Colaboratory上访问它:

Q-learning实现Frozen Lake

colab.research.google.com

回顾......

就这样!不要忘记自己实现代码的每个部分 - 尝试修改我给你的代码非常重要。

尝试添加epoch,改变学习速度,并使用更复杂的环境(例如使用8x8瓷砖的Frozen-lake)。玩得开心!

下次我们将开展深度Q学习,这是2015年深度强化学习的最大突破之一。我们将训练一个智能体玩Doom,并*掉敌人!

想要继续查看该篇文章相关链接和参考文献?

长按链接点击打开或点击底部【深度强化学习从入门到大师:通过Q学习进行强化学习(第二部分)】:

https://ai.yanxishe.com/page/TextTranslation/1394

AI研习社每日更新精彩内容,观看更多精彩内容:雷锋网雷锋网雷锋网

【点击跳转】深度强化学习从入门到大师:简介篇(第一部分)

用PyTorch来做物体检测和追踪

用 Python 做机器学习不得不收藏的重要库

初学者怎样使用Keras进行迁移学习

一文带你读懂 WaveNet:谷歌助手的声音合成器

等你来译:

强化学习:通往基于情感的行为系统

如何用Keras来构建LSTM模型,并且调参

高级DQNs:利用深度强化学习玩吃豆人游戏

用于深度强化学习的结构化控制网络 (ICML 论文讲解)

查看全文
大家还看了
也许喜欢
更多游戏

Copyright © 2024 妖气游戏网 www.17u1u.com All Rights Reserved