根据矩阵A的秩的定义求秩,找 A 中不等于 0 的子式的最高阶数。 一般当行数与列数都较高时,按定义求秩是很麻烦的。 对于行阶梯形矩阵,显然它的秩就等于非零行的行数。
因为两个等价的矩阵的秩相等,也可以用初等变换把矩阵化为行阶梯形矩阵。 矩阵经初等变换后其秩不变,因而把矩阵用初等变换化为行阶梯形矩阵,行阶梯形矩阵中非零行的行数即为所求矩阵的秩。这是求矩阵秩的一种常用方法。
矩阵的秩计算公式:
A=(aij)m×n
按照初等行变换原则把原来的矩阵变换为阶梯型矩阵,总行数减去全部为零的行数即非零的行数就是矩阵的秩了。
用初等行变换化成梯矩阵,梯矩阵中非零行数就是矩阵的秩