【Python数据分析系列】全面梳理数组维度转化和堆叠操作(案例)

【Python数据分析系列】全面梳理数组维度转化和堆叠操作(案例)

首页休闲益智堆叠排序更新时间:2024-07-19

这是Python数据分析系列原创文章,我的第184篇原创文章。

一、问题

在做数据分析和机器学习任务的时候,经常会遇到数据的*,这就涉及到关于数组的维度转化和堆叠问题,本文将详细总结数据的堆叠操作方法。希望读者自己能够感悟其中的区别。

二、数组的属性和方法数据准备

import numpy as np X1 = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) X2 = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]])2.1 尺寸、形状、长度

print('元素数量', X2.size) # 输出数组元素的个数 print('行数', np.size(X2, 0), '列数', np.size(X2, 1)) # 输出行数和列数 print("维度:", X2.shape) # 输出数组的形状(维度) print('行数', X2.shape[0], '列数', X2.shape[1]) # 输出行数和列数 print('长度', len(X2)) # 输出数组的长度

输出结果:

2.2 一维数组转二维

X3 = X1.reshape(len(X1), 1) X4=np.reshape(X1,(-1,1))

以上两种方法等价,np.reshape函数可以在不改变数组元素的情况下改变数组的形状,但是需要确保新的形状与原数组的元素数量匹配。

2.3 二维数组转一维

X5 = X2.flatten()

np.flatten方法返回一个展平后的一维数组,其中元素按照原数组的顺序排列。

三、创建数组3.1 根据一组索引号创建数组

# 索引和数据 l1 = [0, 1, 2] l2 = [0, 5, 2] data = [55, 58, 58] indices = list(zip(l1, l2)) # 确定二维数组的大小 max_index = np.max(indices, axis=0) rows, cols = max_index[0] 1, max_index[1] 1 # 创建初始的二维数组 arr = np.zeros((rows, cols)) # 根据索引和数据填充二维数组 for idx, value in zip(indices, data): arr[idx] = value print(arr) # 绘制数据的热力图 # ax = sns.heatmap(arr) # plt.show()

arr如下:arr[0][0]=55;arr[1][5]=55;arr[2][2]=55;

3.2 np.random()随机数生成数组

np.random.seed(0) data=np.random.rand(10,12)

np.random.rand()返回一个或一组服从“0~1”均匀分布的随机样本值。随机样本取值范围是[0,1),不包括1。

np.random.randn()返回一个或一组服从标准正态分布的随机样本值。

np.random.seed(0) data=np.random.randint(2, high=10, size=(2,3))

numpy.random.randint()返回一个随机整型数

np.random.seed(0) data= np.random.random((3, 4))

np.random.random()返回[0,1)之间的浮点数

三、数组堆叠操作准备数据

a1 = np.array([1, 3, 4]) # shape (3,) a2 = np.array([4, 6, 7]) # shape (3,) a3 = np.array([8, 10, 14]) # shape (3,) b1 = np.array([[1,2,3],[4,5,6]]) # shape (3, 3) b2 = np.array([[11,21,31],[7,8,9]]) # shape (3, 3)3.1 stack()

c1=np.stack((a1,a2,a3),axis=0) c2=np.stack((a1,a2,a3),axis=1)

np.stack是NumPy库中的一个函数,用于沿新的轴将多个数组堆叠在一起。它可以用于在新的维度上将多个数组进行堆叠,从而创建一个更高维度的数组。需要注意的是,堆叠的数组必须具有相同的形状。

以上是在第一个维度上(行)进行堆叠的结果

以上是在第二个维度(列)上进行堆叠的结果

3.2 vstack()

d1 = np.vstack((a1, a2, a3))

np.vstack是NumPy库中的一个函数,用于沿垂直方向(行方向)将多个数组堆叠在一起。它可以将多个数组垂直堆叠成一个更大的数组。需要注意的是,堆叠的数组在除了垂直方向(行方向)以外的其他维度上必须具有相同的形状。

以上是堆叠的结果,沿行方向,列数不变。

3.3 hstack()

e1 = np.hstack((a1, a2, a3))

np.hstack是NumPy库中的一个函数,用于沿水平方向(列方向)将多个数组堆叠在一起。它可以将多个数组水平堆叠成一个更大的数组。需要注意的是,堆叠的数组在除了水平方向(列方向)以外的其他维度上必须具有相同的形状。

以上是堆叠的结果,沿列方向,行数不变。

3.4 dstack()

f1 = np.dstack((a1, a2, a3))

np.dstack是NumPy库中的一个函数,用于沿深度方向(第三维度)将多个数组堆叠在一起。它可以将多个二维数组沿深度方向堆叠成一个更大的三维数组。需要注意的是,堆叠的数组在除了深度方向(第三维度)以外的其他维度上必须具有相同的形状。

3.5 row_stack()

g1 = np.row_stack((a1, a2, a3))

np.row_stack是NumPy库中的一个函数,用于沿行方向将多个数组堆叠在一起。它可以将多个数组按行堆叠成一个更大的数组。需要注意的是,堆叠的数组在除了行方向以外的其他维度上必须具有相同的形状。

以上是堆叠的结果

3.6 column_stack()

h1 = np.column_stack((a1, a2, a3))

np.column_stack是NumPy库中的一个函数,用于沿列方向将多个数组堆叠在一起。它可以将多个数组按列堆叠成一个更大的数组。需要注意的是,堆叠的数组在除了列方向以外的其他维度上必须具有相同的形状。

以上是堆叠的结果

3.7 concatenate()

i1=np.concatenate((a1,a2,a3),axis=0) i2=np.concatenate((b1,b2),axis=1)

np.concatenate是NumPy库中的一个函数,用于沿指定轴将多个数组连接在一起。它可以将多个数组在指定的轴上进行连接,生成一个更大的数组。需要注意的是,连接的数组在除了指定轴以外的其他维度上必须具有相同的形状。

i1结果:

i2结果:

本期内容就到这里,我们下期再见!需要数据集和源码的小伙伴可以关注私信作者!

作者简介:

读研期间发表6篇SCI数据算法相关论文,目前在某研究院从事数据算法相关研究工作,结合自身科研实践经历不定期持续分享关于Python、数据分析、特征工程、机器学习、深度学习、人工智能系列基础知识与案例。

致力于只做原创,以最简单的方式理解和学习,关注我一起交流成长。

原文链接:

查看全文
大家还看了
也许喜欢
更多游戏

Copyright © 2024 妖气游戏网 www.17u1u.com All Rights Reserved