原文标题:
Well played
How maths can help you win your favourite games
A global history of gaming is educational and filled with practical tips
会玩
如何运用数学知识帮助你在游戏中获胜
一部全球游戏史充满教育意义和实用技巧
Around the World in 80 Games. By Marcus du Sautoy
《全球80种游戏》作者:马库斯·杜·索托伊
[Paragraph 1]
WHICH ARE the best properties to buy when playing Monopoly, and how many houses should you build on them?
玩《大富翁》游戏时,哪些是最值得购买的房产?应该在这些房产上建造多少栋房屋?
Which continent should you aim to take over first in Risk?
在《征服世界》游戏中,你应该首先占领哪个大陆?
And what is the best strategy when using the doubling cube in backgammon?
在《西洋双陆棋》中,使用翻倍骰子的最佳策略是什么?
These are some of the questions considered and answered by Marcus du Sautoy, a British mathematician and Oxford professor, in his sprightly, light-hearted history of games and gaming.
这些都是英国数学家、牛津大学教授马库斯·杜·索托伊在他轻松愉快的游戏和博弈历史书中思考和回答的问题。
[Paragraph 2]
The narrative is organised geographically as a trip around the world, starting with ancient games from the Middle East—backgammon, the Royal Game of Ur, the Egyptian game of senet—and ending up in Europe with modern games such as Pandemic and Dobble.
该书按地理顺序进行布局,仿佛一场世界之旅,从中东的古老游戏开始——如西洋双陆棋、古代乌尔王家游戏、埃及的塞内特游戏——一直到欧洲的现代游戏如《瘟疫危机》《多布尔》。
Along the way the author considers many old favourites (Cluedo, Scrabble, Risk), recent arrivals (Wordle, Settlers of Catan) and less familiar games from a wide range of cultures and historical periods, such as the African game of mancala and the Indian card game of ganjifa, whose rules change at night.
一路上,作者思考了许多古老的经典游戏(如克鲁多、拼字游戏、征服世界)、最近的新游戏(如字谜游戏、卡坦岛),以及来自不同文化和历史时期的不太为人所熟知的游戏,比如非洲的曼卡拉游戏和印度的甘吉法纸牌游戏,游戏规则在夜间发生改变。
[Paragraph 3]
The list is not exhaustive or comprehensive but reflects his own collection.
游戏清单并不详尽或全面,但反映了作者自己的收藏。
It includes a handful of video games (Prince of Persia, Game of Life) and one sport (the Mayan ball game of pitz).
其中还包括一些电子游戏(波斯王子、生命游戏)和一项体育运动(玛雅皮兹球游戏)。
[Paragraph 4]
All this is, of course, really an opportunity for Mr du Sautoy to sprinkle in plenty of mathematical explanations, to provide what he calls “a celebration of the mathematics that swims seductively just below the surface of many of the games I love”.
当然,所有这些游戏都为杜索托伊教授提供了一个机会,让他巧妙融入大量的数学解释,他称之为“庆祝那些隐藏在我喜爱的游戏表面下、极具诱惑力的数学”。
Playing games, he writes, “overlaps with what I enjoy about mathematics”: the challenge of solving a problem within a set of rules, the need to overcome obstacles and the victorious “aha” moment when a solution is found.
他写道,玩游戏“与我的数学兴趣重叠”:迎接规则内解决问题的挑战、克服障碍的需要以及找到解决方案时的胜利“啊哈”时刻。
[Paragraph 5]
As well as forays into probability and game theory, he explains dice rolls in Monopoly using Markov chains; the torus-shaped playing field of video games like Spacewar!; and how the geometries of finite projective planes underpin the deceptively simple game of Dobble.
除了涉足概率和博弈论之外,他还使用马尔可夫链解释了《大富翁》中的骰子点数;解释了《太空大战!》等电子游戏的环形游戏场;以及用有限射影平面几何结构解释看似简单的《多布尔》游戏。
And in many cases these explanations provide concrete advice to players.
在许多情况下,这些数学解释为游戏玩家提供了具体的建议。
[Paragraph 6]
In Monopoly, says Mr du Sautoy, the best properties to buy are the orange ones, followed by the red ones (and build three houses on them).
杜索托伊教授说,在《大富翁》中,最值得买的房产是橙色的,其次是红色的(在上面建三栋房子)。
In Risk, control of North America has the best risk-reward ratio, generating a good supply of bonus armies while being easy to defend.
在《征服世界》游戏中,控制北美洲的风险回报率最高,既能获得大量奖励军队,又易于防守。
In backgammon, accept a double if you think you have more than a 20% chance of winning; offer one if you think you have more than an 80% chance of winning. Oh, and “TALES” is the best starting word in Wordle.
在西洋双陆棋中,如果你认为自己有20%以上的胜算,就接受翻倍;如果你认为自己有80%以上的胜算,就不翻倍。对了,“TALES”是字谜游戏中最佳的起始单词。
[Paragraph 7]
The hybrid history-travelogue approach is clunky at times, and some of the entries are not games at all, but mini-essays on game-related topics, from biography to psychology.
历史与游记混合的写法略显笨拙,有些收录根本不是游戏,而是游戏相关的微型论文,涉及传记、心理学等内容。
And despite its high-concept framing, the book can be read in pretty much any order; indeed, the author suggests a game to randomise the order of the chapters.
尽管这本书的构思很高大上,但阅读顺序几乎可以随意调整;事实上,作者还推荐了一个游戏来随机调整章节顺序。
(In an appendix, he then works out how many possible options there are, which doubles as an illustration of the technique of proof by induction.)
(在附录中,他计算出了有多少种可能的选择,这也是归纳法证明的一个示例)。
[Paragraph 8]
Fun, unexpected, operating within fixed but arbitrary rules, producing a range of complex outcomes and offering insights that can be applied to everyday life—a good game combines all these elements. The same can also be said of this book.
有趣、出乎意料、在固定但任意的规则下运行、产生一系列复杂的结果,并提供可应用于日常生活的独到见解——一款优秀的游戏就融合了以上所有这些元素。这本书也是如此。
(恭喜读完,本篇英语词汇量571左右)
原文出自:2023年11月18日《The Economist》Culture版块
精读笔记来源于:自由英语之路
本文翻译整理: Irene
本文编辑校对: Irene
仅供个人英语学习交流使用。
【补充资料】(来自于网络)
《大富翁》Monopoly是一款世界著名的棋盘游戏,玩家可以购买、出售和交易虚拟的地产,赚取租金并搞垮竞争对手。该游戏的目标是成为财富最大的玩家,并通过收购地产、建造房屋和酒店来实现这一目标。规则包括投骰子来移动角色、购买地产、支付租金、参与拍卖、升级地产等,还包含了一些特殊的游戏机制和事件,例如监狱、机会卡、命运卡等,使游戏更加丰富有趣。
西洋双陆棋backgammon,这是一种非常古老的棋类游戏,它的起源可以追溯到数千年前的美索不达米亚地区。在西洋双陆棋中,玩家使用由24个楔形点构成的棋盘进行游戏,每个玩家控制15颗棋子,棋盘被分成两个对称的部分,每个玩家控制一个部分。玩家的目标是将所有的棋子从对方的领土上脱离,并最终移动到自己的领土上去。
马尔可夫链(Markov chains)是一个时间序列模型,它描述了一系列可能的状态以及从一个状态转移到另一个状态的概率。在马尔可夫链中,当一个系统处于某一状态时,它下一个状态的概率只取决于当前状态,与先前的状态无关,这个特性被称为“马尔可夫性质”。马尔可夫链经常被用于描述由一系列随机事件组成的问题,例如气象模型、金融市场模型以及生物学中基因组变异的模型等。
有限射影平面(finite projective planes)是一种几何结构,它由一组点和一组直线组成,满足一些特定的性质。在有限射影平面中,每条直线包含相同数量的点,每个点包含相同数量的直线,并且任意两个点之间都有且仅有一条直线经过。这些性质使得有限射影平面成为一种非常有趣的数学对象,它具有许多独特的特征和结构。在密码学、通信系统设计、计算机科学等领域中具有重要应用。
【重点句子】(3个)
The list is not exhaustive or comprehensive but reflects his own collection.
游戏清单并不详尽或全面,但反映了作者自己的收藏。
And in many cases these explanations provide concrete advice to players.
在许多情况下,这些数学解释为游戏玩家提供了具体的建议。
And despite its high-concept framing, the book can be read in pretty much any order; indeed, the author suggests a game to randomise the order of the chapters.
尽管这本书的构思很高大上,但阅读顺序几乎可以随意调整;事实上,作者还推荐了一个游戏来随机调整章节顺序。
自由英语之路
Copyright © 2024 妖气游戏网 www.17u1u.com All Rights Reserved