TensorFlow官方力推、GitHub爆款项目:用Attention模型自动生成图像字幕

TensorFlow官方力推、GitHub爆款项目:用Attention模型自动生成图像字幕

首页休闲益智海上冲浪者更新时间:2024-08-03

新智元编译

来源:GitHub

编译:金磊

【新智元导读】近期,TensorFlow官方推文推荐了一款十分有趣的项目——用Attention模型生成图像字幕。而该项目在GitHub社区也收获了近十万“点赞”。项目作者Yash Katariya十分详细的讲述了根据图像生成字幕的完整过程,并提供开源的数据和代码,对读者的学习和研究都带来了极大的帮助与便利。

TensorFlow官方推文近期力荐了一款在Github获赞十万之多的爆款项目——利用Attention模型为图像生成字幕。

Image Captioning是一种为图像生成字幕或者标题的任务。给定一个图像如下:

我们的目标就是为这张图生成一个字幕,例如“海上冲浪者(a surfer riding on a wave)”。此处,我们使用一个基于Attention的模型。该模型能够在生成字幕的时候,让我们查看它在这个过程中所关注的是图像的哪一部分

该模型的结构与如下链接中模型结构类似:https://arxiv.org/abs/1502.03044

代码使用的是tf.keraseager execution,读者可以在链接指南中了解更多信息。

tf.keras: https://www.tensorflow.org/guide/keras

eager execution: https://www.tensorflow.org/guide/eager

这款笔记是一种端到端(end-to-end)的样例。如果你运行它,将会下载MS-COCO数据集,使用Inception V3来预处理和缓存图像的子集、训练出编码-解码模型,并使用它来在新的图像上生成字幕。

如果你在 Colab上面运行,那么TensorFlow的版本需要大于等于1.9。

在下面的示例中,我们训练先训练较少的数据集作为例子。在单个P100 GPU上训练这个样本大约需要2个小时。 我们先训练前30,000个字幕(对应约20,000个图像,取决于shuffling,因为数据集中每个图像有多个字幕)。

# Import TensorFlow and enable eager execution
# This code requires TensorFlow version >=1.9
import tensorflow as tf tf.enable_eager_execution
# We'll generate plots of attention in order to see which parts of an image
# our model focuses on during captioning
import matplotlib.pyplot as plt
# Scikit-learn includes many helpful utilities
from sklearn.model_selection
import train_test_split
from sklearn.utils import shuffle
import re
import numpy as np
import os
import time
import json
from glob import glob
from PIL import Image
import pickle

下载并准备MS-COCO数据集

我们将使用MS-COCO数据集来训练我们的模型。 此数据集包含的图像大于82,000个,每个图像都标注了至少5个不同的字幕。 下面的代码将自动下载并提取数据集。

注意:需做好提前下载的准备工作。 该数据集大小为13GB!!!

annotation_zip = tf.keras.utils.get_file('captions.zip', cache_subdir=os.path.abspath('.'), origin = 'http://images.cocodataset.org/annotations/annotations_trainval2014.zip', extract = True) annotation_file = os.path.dirname(annotation_zip) '/annotations/captions_train2014.json'name_of_zip = 'train2014.zip'if not os.path.exists(os.path.abspath('.') '/' name_of_zip): image_zip = tf.keras.utils.get_file(name_of_zip, cache_subdir=os.path.abspath('.'), origin = 'http://images.cocodataset.org/zips/train2014.zip', extract = True) PATH = os.path.dirname(image_zip) '/train2014/'else: PATH = os.path.abspath('.') '/train2014/'

限制数据集大小以加速训练(可选)

在此示例中,我们将选择30,000个字幕的子集,并使用这些字幕和相应的图像来训练我们的模型。 当然,如果你选择使用更多数据,字幕质量将会提高。

# read the json file
with open(annotation_file, 'r') as f: annotations = json.load(f)
# storing the captions and the image name in vectors
all_captions = all_img_name_vector =
for annot in annotations['annotations']: caption = '<start> ' annot['caption'] ' <end>' image_id = annot['image_id'] full_coco_image_path = PATH 'COCO_train2014_' '2d.jpg' % (image_id) all_img_name_vector.append(full_coco_image_path) all_captions.append(caption)
# shuffling the captions and image_names together# setting a random state
train_captions, img_name_vector = shuffle(all_captions, all_img_name_vector, random_state=1)
# selecting the first 30000 captions from the shuffled set
num_examples = 30000
train_captions = train_captions[:num_examples] img_name_vector = img_name_vector[:num_examples]

len(train_captions), len(all_captions)

使用InceptionV3来预处理图像

接下来,我们将使用InceptionV3(在Imagenet上预训练过的)对每个图像进行分类。 我们将从最后一个卷积层中提取特征。

首先,我们需要将图像按照InceptionV3的要求转换格式:

def load_image(image_path): img = tf.read_file(image_path) img = tf.image.decode_jpeg(img, channels=3) img = tf.image.resize_images(img, (299, 299)) img = tf.keras.applications.inception_v3.preprocess_input(img)
return img, image_path

初始化InceptionV3并加载预训练的Imagenet权重

为此,我们将创建一个tf.keras模型,其中输出层是InceptionV3体系结构中的最后一个卷积层。

image_model = tf.keras.applications.InceptionV3(include_top=False, weights='imagenet') new_input = image_model.input hidden_layer = image_model.layers[-1].output image_features_extract_model = tf.keras.Model(new_input, hidden_layer)

将InceptionV3中提取出来的特征进行缓存

我们将使用InceptionV3预处理每个图像并将输出缓存到磁盘。 缓存RAM中的输出会更快但内存会比较密集,每个映像需要8 x 8 x 2048个浮点数。 这将超出Colab的内存限制(尽管这些可能会发生变化,但实例似乎目前有大约12GB的内存)。

通过更复杂的缓存策略(例如,通过分割图像以减少随机访问磁盘I / O)可以改善性能(代价是编写更多的代码)。

使用一个GPU在Colab中运行大约需要10分钟。 如果你想查看进度条,可以:安装tqdm(!pip install tqdm),然后将下面这行代码:

for img,path in img_dataset:

改为:

for img,path in dqtm(img_dataset):

# getting the unique imagesencode_train = sorted(set(img_name_vector))# feel free to change the batch_size according to your system configurationimage_dataset = tf.data.Dataset.from_tensor_slices( encode_train).map(load_image).batch(16)for img, path in image_dataset: batch_features = image_features_extract_model(img) batch_features = tf.reshape(batch_features, (batch_features.shape[0], -1, batch_features.shape[3])) for bf, p in zip(batch_features, path): path_of_feature = p.numpy.decode("utf-8") np.save(path_of_feature, bf.numpy)

预处理并标注字幕

# This will find the maximum length of any caption in our datasetdef calc_max_length(tensor): return max(len(t) for t in tensor)

# The steps above is a general process of dealing with text processing# choosing the top 5000 words from the vocabularytop_k = 5000tokenizer = tf.keras.preprocessing.text.Tokenizer(num_words=top_k, oov_token="<unk>", filters='!"#$%&* .,-/:;=?@[\]^_`{|}~ ') tokenizer.fit_on_texts(train_captions) train_seqs = tokenizer.texts_to_sequences(train_captions)

tokenizer.word_index = {key:value for key, value in tokenizer.word_index.items if value <= top_k}# putting <unk> token in the word2idx dictionarytokenizer.word_index[tokenizer.oov_token] = top_k 1tokenizer.word_index['<pad>'] = 0

# creating the tokenized vectorstrain_seqs = tokenizer.texts_to_sequences(train_captions)

# creating a reverse mapping (index -> word)index_word = {value:key for key, value in tokenizer.word_index.items}

# padding each vector to the max_length of the captions# if the max_length parameter is not provided, pad_sequences calculates that automaticallycap_vector = tf.keras.preprocessing.sequence.pad_sequences(train_seqs, padding='post')

# calculating the max_length # used to store the attention weightsmax_length = calc_max_length(train_seqs)

将数据分为训练集和测试集

  1. # Create training and validation sets using 80-20 split

  2. img_name_train, img_name_val, cap_train, cap_val = train_test_split(img_name_vector,

  3. cap_vector,

  4. test_size=0.2,

  5. random_state=0)

len(img_name_train), len(cap_train), len(img_name_val), len(cap_val)

图片和字幕已就位!

接下来,创建一个tf.data数据集来训练模型。

  1. # feel free to change these parameters according to your system's configuration

  2. BATCH_SIZE = 64

  3. BUFFER_SIZE = 1000

  4. embedding_dim = 256

  5. units = 512

  6. vocab_size = len(tokenizer.word_index)

  7. # shape of the vector extracted from InceptionV3 is (64, 2048)

  8. # these two variables represent that

  9. features_shape = 2048

  10. attention_features_shape = 64

  1. # loading the numpy files

  2. def map_func(img_name, cap):

  3. img_tensor = np.load(img_name.decode('utf-8') '.npy')

  4. return img_tensor, cap

  1. dataset = tf.data.Dataset.from_tensor_slices((img_name_train, cap_train))

  2. # using map to load the numpy files in parallel

  3. # NOTE: Be sure to set num_parallel_calls to the number of CPU cores you have

  4. # https://www.tensorflow.org/api_docs/python/tf/py_func

  5. dataset = dataset.map(lambda item1, item2: tf.py_func(

  6. map_func, [item1, item2], [tf.float32, tf.int32]), num_parallel_calls=8)

  7. # shuffling and batching

  8. dataset = dataset.shuffle(BUFFER_SIZE)

  9. # https://www.tensorflow.org/api_docs/python/tf/contrib/data/batch_and_drop_remainder

  10. dataset = dataset.batch(BATCH_SIZE)

  11. dataset = dataset.prefetch(1)

我们的模型

有趣的是,下面的解码器与具有Attention的神经机器翻译的示例中的解码器相同。

模型的结构灵感来源于上述的那篇文献:

  1. def gru(units):

  2. # If you have a GPU, we recommend using the CuDNNGRU layer (it provides a

  3. # significant speedup).

  4. if tf.test.is_gpu_available:

  5. return tf.keras.layers.CuDNNGRU(units,

  6. return_sequences=True,

  7. return_state=True,

  8. recurrent_initializer='glorot_uniform')

  9. else:

  10. return tf.keras.layers.GRU(units,

  11. return_sequences=True,

  12. return_state=True,

  13. recurrent_activation='sigmoid',

  14. recurrent_initializer='glorot_uniform')

  1. class BahdanauAttention(tf.keras.Model):

  2. def __init__(self, units):

  3. super(BahdanauAttention, self).__init__

  4. self.W1 = tf.keras.layers.Dense(units)

  5. self.W2 = tf.keras.layers.Dense(units)

  6. self.V = tf.keras.layers.Dense(1)

  7. def call(self, features, hidden):

  8. # features(CNN_encoder output) shape == (batch_size, 64, embedding_dim)

  9. # hidden shape == (batch_size, hidden_size)

  10. # hidden_with_time_axis shape == (batch_size, 1, hidden_size)

    hidden_with_time_axis = tf.expand_dims(hidden, 1)

  11. # score shape == (batch_size, 64, hidden_size)

  12. score = tf.nn.tanh(self.W1(features) self.W2(hidden_with_time_axis))

  13. # attention_weights shape == (batch_size, 64, 1)

  14. # we get 1 at the last axis because we are applying score to self.V

  15. attention_weights = tf.nn.softmax(self.V(score), axis=1)

  16. # context_vector shape after sum == (batch_size, hidden_size)

  17. context_vector = attention_weights * features

  18. context_vector = tf.reduce_sum(context_vector, axis=1)

  19. return context_vector, attention_weights

  1. class CNN_Encoder(tf.keras.Model):

  2. # Since we have already extracted the features and dumped it using pickle

  3. # This encoder passes those features through a Fully connected layer

  4. def __init__(self, embedding_dim):

  5. super(CNN_Encoder, self).__init__

  6. # shape after fc == (batch_size, 64, embedding_dim)

  7. self.fc = tf.keras.layers.Dense(embedding_dim)

  8. def call(self, x):

  9. x = self.fc(x)

  10. x = tf.nn.relu(x)

  11. return x

  1. class RNN_Decoder(tf.keras.Model):

  2. def __init__(self, embedding_dim, units, vocab_size):

  3. super(RNN_Decoder, self).__init__

    self.units = units

  4. self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)

  5. self.gru = gru(self.units)

  6. self.fc1 = tf.keras.layers.Dense(self.units)

  7. self.fc2 = tf.keras.layers.Dense(vocab_size)

  8. self.attention = BahdanauAttention(self.units)

  9. def call(self, x, features, hidden):

  10. # defining attention as a separate model

  11. context_vector, attention_weights = self.attention(features, hidden)

  12. # x shape after passing through embedding == (batch_size, 1, embedding_dim)

  13. x = self.embedding(x)

  14. # x shape after concatenation == (batch_size, 1, embedding_dim hidden_size)

  15. x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1)

  16. # passing the concatenated vector to the GRU

  17. output, state = self.gru(x)

  18. # shape == (batch_size, max_length, hidden_size)

  19. x = self.fc1(output)

  20. # x shape == (batch_size * max_length, hidden_size)

  21. x = tf.reshape(x, (-1, x.shape[2]))

  22. # output shape == (batch_size * max_length, vocab)

  23. x = self.fc2(x)

  24. return x, state, attention_weights

  25. def reset_state(self, batch_size):

  26. return tf.zeros((batch_size, self.units))

  1. encoder = CNN_Encoder(embedding_dim)

  2. decoder = RNN_Decoder(embedding_dim, units, vocab_size)

  1. optimizer = tf.train.AdamOptimizer

  2. # We are masking the loss calculated for padding

  3. def loss_function(real, pred):

  4. mask = 1 - np.equal(real, 0)

  5. loss_ = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=real, logits=pred) * mask

  6. return tf.reduce_mean(loss_)

开始训练

  1. # adding this in a separate cell because if you run the training cell

    # many times, the loss_plot array will be reset

    loss_plot =

  1. EPOCHS = 20

  2. for epoch in range(EPOCHS):

    start = time.time

    total_loss = 0

  3. for (batch, (img_tensor, target)) in enumerate(dataset):

    loss = 0

  4. # initializing the hidden state for each batch

    # because the captions are not related from image to image

    hidden = decoder.reset_state(batch_size=target.shape[0])

  5. dec_input = tf.expand_dims([tokenizer.word_index['<start>']] * BATCH_SIZE, 1)

  6. with tf.GradientTape as tape:

    features = encoder(img_tensor)

  7. for i in range(1, target.shape[1]):

    # passing the features through the decoder

    predictions, hidden, _ = decoder(dec_input, features, hidden)

  8. loss = loss_function(target[:, i], predictions)

  9. # using teacher forcing

    dec_input = tf.expand_dims(target[:, i], 1)

  10. total_loss = (loss / int(target.shape[1]))

  11. variables = encoder.variables decoder.variables

  12. gradients = tape.gradient(loss, variables)

  13. optimizer.apply_gradients(zip(gradients, variables), tf.train.get_or_create_global_step)

  14. if batch % 100 == 0:

    print ('Epoch {} Batch {} Loss {:.4f}'.format(epoch 1,

    batch,

    loss.numpy / int(target.shape[1])))

    # storing the epoch end loss value to plot later

    loss_plot.append(total_loss / len(cap_vector))

  15. print ('Epoch {} Loss {:.6f}'.format(epoch 1,

    total_loss/len(cap_vector)))

    print ('Time taken for 1 epoch {} sec\n'.format(time.time - start))

  1. plt.plot(loss_plot)

  2. plt.xlabel('Epochs')

  3. plt.ylabel('Loss')

  4. plt.title('Loss Plot')

  5. plt.show

字幕“诞生”了!

  1. def evaluate(image):

  2. attention_plot = np.zeros((max_length, attention_features_shape))

  3. hidden = decoder.reset_state(batch_size=1)

    temp_input = tf.expand_dims(load_image(image)[0], 0)

  4. img_tensor_val = image_features_extract_model(temp_input)

  5. img_tensor_val = tf.reshape(img_tensor_val, (img_tensor_val.shape[0], -1, img_tensor_val.shape[3]))

  6. features = encoder(img_tensor_val)

  7. dec_input = tf.expand_dims([tokenizer.word_index['<start>']], 0)

    result =

  8. for i in range(max_length):

    predictions, hidden, attention_weights = decoder(dec_input, features, hidden)

  9. attention_plot[i] = tf.reshape(attention_weights, (-1, )).numpy

  10. predicted_id = tf.multinomial(tf.exp(predictions), num_samples=1)[0][0].numpy

    result.append(index_word[predicted_id])

  11. if index_word[predicted_id] == '<end>':

    return result, attention_plot

  12. dec_input = tf.expand_dims([predicted_id], 0)

  13. attention_plot = attention_plot[:len(result), :]

    return result, attention_plot

  1. def plot_attention(image, result, attention_plot):

    temp_image = np.array(Image.open(image))

  2. fig = plt.figure(figsize=(10, 10))

  3. len_result = len(result)

    for l in range(len_result):

    temp_att = np.resize(attention_plot[l], (8, 8))

    ax = fig.add_subplot(len_result//2, len_result//2, l 1)

    ax.set_title(result[l])

    img = ax.imshow(temp_image)

    ax.imshow(temp_att, cmap='gray', alpha=0.6, extent=img.get_extent)

  4. plt.tight_layout

    plt.show

  1. # captions on the validation set

    rid = np.random.randint(0, len(img_name_val))

    image = img_name_val[rid]

    real_caption = ' '.join([index_word[i] for i in cap_val[rid] if i not in [0]])

    result, attention_plot = evaluate(image)

  2. print ('Real Caption:', real_caption)

    print ('Prediction Caption:', ' '.join(result))

    plot_attention(image, result, attention_plot)

    # opening the image

    Image.open(img_name_val[rid])

在你的图像上试一下吧!

下面我们提供了一种方法,你可以使用我们刚训练过的模型为你自己的图像添加字幕。 请记住,它是在相对少量的数据上训练的,你的图像可能与训练数据不同(因此出来的结果可能会很奇怪,做好心理准备呦!)。

GitHub原文链接:

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/contrib/eager/python/examples/generative_examples/image_captioning_with_attention.ipynb

【加入社群】

新智元 AI 技术 产业社群招募中,欢迎对 AI 技术 产业落地感兴趣的同学,加小助手微信号: aiera2015_3入群;通过审核后我们将邀请进群,加入社群后务必修改群备注(姓名 - 公司 - 职位;专业群审核较严,敬请谅解)。

查看全文
大家还看了
也许喜欢
更多游戏

Copyright © 2024 妖气游戏网 www.17u1u.com All Rights Reserved