# 生成数独初始矩阵的常见方法是使用回溯算法,在保证数独有唯一解的前提下,随机填充数独矩阵,并剔除部分数字以形成空白格子。以下是一个示例代码:
#
# ```python
import random
def generate_sudoku():
# 初始化一个9*9的二维列表
board = [[0 for _ in range(9)] for _ in range(9)]
# 定义内部函数:检查某个位置是否可以填入某个数字
def can_place(num, row, col):
for i in range(9):
if board[row][i] == num or board[i][col] == num:
return False
sub_box_row = (row // 3) * 3
sub_box_col = (col // 3) * 3
for i in range(sub_box_row, sub_box_row 3):
for j in range(sub_box_col, sub_box_col 3):
if board[i][j] == num:
return False
return True
# 使用回溯算法随机填充数独矩阵
def backtrack(row, col):
if col == 9:
row = 1
col = 0
if row == 9:
return True
candidates = [i for i in range(1, 10)]
random.shuffle(candidates)
for num in candidates:
if can_place(num, row, col):
board[row][col] = num
if backtrack(row, col 1):
return True
board[row][col] = 0
return False
# 执行回溯算法
backtrack(0, 0)
# 随机剔除部分数字以形成空白格子
holes = random.randint(25, 35)
for i in range(holes):
row = random.randint(0, 8)
col = random.randint(0, 8)
board[row][col] = 0
return board
# ```
#
# 该函数会返回一个随机生成的数独矩阵,并且保证该矩阵有唯一解。您可以将该函数放在您的程序中调用,以得到一个随机生成的数独游戏的初始矩阵。
用print函数已验证通过。
print(generate_sudoku())
产生如下随机矩阵:
[[6, 4, 7, 3, 0, 1, 8, 5, 9], [0, 8, 9, 7, 5, 4, 6, 0, 3], [0, 5, 0, 8, 0, 9, 0, 7, 4], [0, 1, 8, 6, 3, 2, 7, 0, 5], [7, 3, 0, 9, 0, 8, 2, 1, 0], [0, 2, 6, 0, 7, 5, 3, 4, 0], [2, 9, 1, 4, 8, 6, 5, 0, 7], [8, 0, 4, 0, 1, 3, 9, 6, 0], [0, 0, 3, 2, 9, 7, 4, 0, 1]]
Copyright © 2024 妖气游戏网 www.17u1u.com All Rights Reserved