重剑无锋,大巧不工——kfifo的无锁环形队列分析

重剑无锋,大巧不工——kfifo的无锁环形队列分析

首页休闲益智完美队列更新时间:2024-05-13
一,前言

金庸老爷子在《神雕侠侣》中说独孤求败的玄铁重剑时,说道“重剑无锋,大巧不工”。他说的是如果个人修养达到一定的阶段,“花石草木皆可为剑”,而不需要更多技巧。在Linux内核中从来不缺少简洁、优美、高效的实现代码,缺少的是发现这些美的眼睛和毅力。在Linux内核中,代码的简洁高效并不意味采用了失传很久的武林绝技,恰恰相反,它们往往通过最基本的知识和数据结构来实现完美的代码,而kfifo可以说就是其中的一个典范。

这里用“大巧不工”来形容Linux中的无锁环形队列显然不合适,原因在于:无锁环形队列属于精雕细琢,大道至简、匠心独运,简洁而不简单。它使用最基本的技术知识实现了最重要的功能。下面我们便一睹其芳容。

二,Kfifo简介

本文分析的源代码版本

2.6.12

kfifo的头文件

linux-2.6.12\include\linux\kfifo.h

kfifo的源文件

linux-2.6.12\kernel\kfifo.c

kfifo是一种"First In First Out “数据结构,它采用了前面提到的环形缓冲区来实现,提供一个无边界的字节流服务。采用环形缓冲区的好处为,当一个数据元素被用掉后,其余数据元素不需要移动其存储位置,从而减少拷贝提高效率。更重要的是,kfifo采用了并行无锁技术,kfifo实现的单生产/单消费模式的共享队列是不需要加锁同步的。

更多Linux内核视频教程文档资料免费领取后台私信【内核】自行获取。

并行无锁技术的由来:

当前高性能的服务器软件(例如HTTP加速器)大多都运行在多核服务器上,当前的硬件可以支持32、 64甚至更多的CPU,在这种高并发的环境下,锁竞争机制有时候比数据拷贝、上下文切换等更伤害系统的性能,因此在多核环境下,需要把重要的数据结构从锁的保护下移到无锁环境中,以此来提高软件的性能。

所以,现在无锁机制越来越流行,在不同的环境中使用不同的无锁队列可以节省开销,提高程序效率。

[1] 摘自《深入浅出DPDK》第四章同步互斥机制:4.4.1 Linux内核无锁环形缓冲

下面我们说一下kfifo的结构:

struct kfifo { unsigned char *buffer; /* the buffer holding the data */ unsigned int size; /* the size of the allocated buffer */ unsigned int in; /* data is added at offset (in % size) */ unsigned int out; /* data is extracted from off. (out % size) */ spinlock_t *lock; /* protects concurrent modifications */ };

kfifo结构中每个字段的含义:

buffer

用于存放数据的缓存

size

缓冲区空间的大小,要求为2的幂次方

in

指向buffer中队头

out

指向buffer中的队尾

lock

用来同步多个生产者、多个消费者的情形

Kfifo无锁队列的应用注意事项:

以上三种条件都满足的情况下可以使用kfifo无锁队列。相反,如果存在多个生产者或者多个消费者,则可以通过锁来进行同步:

Kfifo作为一个基本FIFO结构,包括入队函数___kfifo_put、出队函数__kfifo_get()等基本操作。下面来一一说明。

三,Kfifo初始化

Kfifo的初始化是指为kfifo分配空间、初始化kfifo中的各项参数等操作。

/** * kfifo_alloc - allocates a new FIFO and its internal buffer * @size: the size of the internal buffer to be allocated. * @gfp_mask: get_free_pages mask, passed to kmalloc() * @lock: the lock to be used to protect the fifo buffer * * The size will be rounded-up to a power of 2. */ struct kfifo *kfifo_alloc(unsigned int size, unsigned int __nocast gfp_mask, spinlock_t *lock) { unsigned char *buffer; struct kfifo *ret; /* * round up to the next power of 2, since our 'let the indices * wrap' tachnique works only in this case. */ if (size & (size - 1)) {/*如果不是2的幂次方,则向上取到2的幂次方*/ BUG_ON(size > 0x80000000); size = roundup_pow_of_two(size); } ​ buffer = kmalloc(size, gfp_mask); if (!buffer) return ERR_PTR(-ENOMEM); ​ ret = kfifo_init(buffer, size, gfp_mask, lock); ​ if (IS_ERR(ret)) kfree(buffer); ​ return ret; }3.1 判断一个数是否为2的幂次方

在这个kfifo_alloc()函数中,要求size需要为2的幂次方,如何实现高效的判断呢?

在二进制中,2的幂次方很容易表示:一个数只有一个bit上是1,其余全为0,例如:

十进制数表示

二进制表示

是否为2的幂次方

8

0000 1000

30

0001 1110

666

001010011010

1024

0100 0000 0000

2000

0111 1101 0000

4096

0001 0000 0000 0000

也就是说,如果我们可以判断:一个数的二进制上只有一个bit位为1,那么这个数肯定为2的幂次方。问题发生了等价转换,那么我们如何判断 一个数的二进制中包含几个1呢???。【这是面试中的一个常见问题和技巧】。方法就是:x & (x -1)==0, 则这个数二进制中只有一个1,否则包含多个1。通常使用这个方法来计算一个数中包含几个1。

[2] 《剑指offer》面试题15:二进制中1的个数

/*求一个数的二进制中1的个数*/ int numberof1(int n) { int count = 0; while(n){ count ; n = n & (n-1); } return count; }

简单地说:x & (n -1)会将x二进制中最低位上的1置为0(最后一个1置为0)。因此如果n&(n-1)==0,那么说明这个数二进制中只有一个bit位为1,因此肯定是2的幂次方。

3.2 求不小于某个数2的整数次幂

我看还是直接看内核实现吧:

static __inline__ int generic_fls(int x) { int r = 32; ​ if (!x) return 0; if (!(x & 0xffff0000u)) { x <<= 16; r -= 16; } if (!(x & 0xff000000u)) { x <<= 8; r -= 8; } if (!(x & 0xf0000000u)) { x <<= 4; r -= 4; } if (!(x & 0xc0000000u)) { x <<= 2; r -= 2; } if (!(x & 0x80000000u)) { x <<= 1; r -= 1;1 } return r; } ​ static inline unsigned long __attribute_const__ roundup_pow_of_two(unsigned long x) { return (1UL << generic_fls(x - 1)); }

这个效率嘛? 由于全是位运算,肯定为求模、取余等四则运算效率要高, 不能放过任何一点可以优化的地方。至于这样做的原理,自己品品吧,也是相当经典的存在。

root@ubantu:/home/toney# ./a.out 12 --- output=4 16 --- output=5 24 --- output=5 32 --- output=6 128 --- output=8 1024 --- output=11 1400 --- output=11 2040 --- output=113.3 为什么要求2的幂次方呢?

为了使用位运算,快, 快,不择手段的快

4. Kfifo入队和出队

__kfifo_put是Kfifo的入队函数,源码实现如下:

unsigned int __kfifo_put(struct kfifo *fifo, unsigned char *buffer, unsigned int len) { unsigned int l; len = min(len, fifo->size - fifo->in fifo->out); /* first put the data starting from fifo->in to buffer end */ l = min(len, fifo->size - (fifo->in & (fifo->size - 1))); memcpy(fifo->buffer (fifo->in & (fifo->size - 1)), buffer, l); ​ /* then put the rest (if any) at the beginning of the buffer */ memcpy(fifo->buffer, buffer l, len - l); ​ fifo->in = len; ​ return len; }

需要说明的是Linux 2.6.12版本的内核实现中并没有使用内存屏障,而在后续版本中添加了内存屏障,它是实现无锁队列的核心和关键。这里我们就按照Linux2.6.12版本实现来说明简单原理。

__kfifo_put( )是Kfifo的出队函数,源码实现如下:

unsigned int __kfifo_get(struct kfifo *fifo, unsigned char *buffer, unsigned int len) { unsigned int l; ​ len = min(len, fifo->in - fifo->out); ​ /* first get the data from fifo->out until the end of the buffer */ l = min(len, fifo->size - (fifo->out & (fifo->size - 1))); memcpy(buffer, fifo->buffer (fifo->out & (fifo->size - 1)), l); ​ /* then get the rest (if any) from the beginning of the buffer */ memcpy(buffer l, fifo->buffer, len - l); ​ fifo->out = len; ​ return len; }

连个if都不想用,真是太抠门了,哎。你多少if-else判断下in,out,len的关系,能让我舒服点呀!!!

4.1 Kfifo右侧入队

当fifo右侧剩余的空间充足时,即size - in%size > len时,直接将数据填充到右侧即可,位置为[in, in len]

l = min(len, fifo->size - (fifo->in & (fifo->size - 1))); memcpy(fifo->buffer (fifo->in & (fifo->size - 1)), buffer, l);

in % size如何高效表示呢? 对,就是in & (size - 1)。这里有一个前提:那就是需要size是2的幂次方。Why ?

首先, in % size的范围为[0, size-1]; in & (size -1)的范围为[0, size-1]。

其次,它的原理是:size为2的幂次方,size -1则表示【0,size-1】每一个bit位都是1,可以得到该范围的所有值,这也是要求size为2的幂次方的原因。

最后,两者在本质上是等价的,但是in & (size -1)只进行位操作,效率高很多。

4.2 Kfifo右侧 左侧入队

当右侧长度不够入队长度时,需要在kfifo左侧入队,此时kfifo左右的范围为【0,len-l】,左侧的范围为【in,in l】

/* first put the data starting from fifo->in to buffer end */ l = min(len, fifo->size - (fifo->in & (fifo->size - 1))); memcpy(fifo->buffer (fifo->in & (fifo->size - 1)), buffer, l); ​ /* then put the rest (if any) at the beginning of the buffer */ memcpy(fifo->buffer, buffer l, len - l);4.3 无符号整数溢出回绕

首先看一个例子:

void main() { unsigned int a = 0xfffffffa; unsigned int b = a 10; unsigned int c = 4; printf("a = %u\n",a); printf("b = %u\n",b); printf("b - a =%d\n",b-a); printf("c - a =%d\n",c-a); ​ }

结果如下:

root@ubantu:/home/toney# gcc kfifo.c root@ubantu:/home/toney# ./a.out a = 4294967290 b = 4 b - a =10 c - a =10 root@ubantu:/home/toney#

解释如下:

a = 4294967290; b = 4; //a 10溢出4,--> 0x1 00 00 00 04 但是unsigned int为4字节共计32位,因此最高位无法获取,b只能获取后32bit,即0x00 00 00 04 b - a = -4294967285;即 0x1 FF FF FF F6 6 : 0110 --> 反码 1001 = 9 -4294967285在内存中的存储方式为:补码=反码 1,即0x1 00 00 00 09 1 = 0x1 00 00 00 0a ​ 因此b - a = 10; ​4. 体会

看完kfifo的实现,最大的感觉就是? 不不,文明人说文明话,妙,是真的妙不可言。如果说这代码是我或者同事写的,我会觉得里面会不会有很多bug,但是如果为内核大佬写的,我觉得没有,就是没有,真的没有呀!!!

查看全文
大家还看了
也许喜欢
更多游戏

Copyright © 2024 妖气游戏网 www.17u1u.com All Rights Reserved