围绕油气智能开采研究,本期精选发表于《石油钻探技术》的5篇双语文章,欢迎阅读!
精选文章/Selected Articles
01
人工智能在压裂技术中的应用现状及前景展望
Status and prospect of artificial intelligence application in fracturing technology
【摘要】随着人工智能理论和计算机技术的快速发展,智能化和数字化已成为推动储层压裂技术发展的重要力量。针对压裂技术智能化发展,阐述了人工智能技术在地质参数预测、压裂参数优化设计、压裂施工实时诊断与调控、压裂工具及材料研发等方面的研究进展与应用情况,分析了当前智能压裂技术发展存在的主要问题与今后的重点发展方向,认识到智能压裂技术仍处于探索试验阶段,国外在“甜点”智能识别、压裂参数优化、现场施工智能化控制等方面的研究已走在前列,并在北美地区多个区块的压裂服务中成功应用,国内仅在压裂大数据机器学习、智能化压裂材料等方面进行了早期探索,在智能压裂装备、工具、实时监测诊断和现场智能化调控等方面的研究与应用较少,与国外存在较大差距。分析认为,数据样本可靠性差、一体化智能压裂方法与装备欠缺和多领域交叉人才缺乏等是影响智能压裂技术快速发展的关键问题,并预测随着万物互联技术的发展,将形成智能化完井压裂系统,不需要人工干预即可完成储层评估、“甜点”识别、压裂参数优化设计、现场调控和压后评估等工作,真正实现一体化智能储层改造。
【Abstract】With the rapid development of artificial intelligence theory and computer technology, intelligentization and digitalization have become important forces to promote the development of reservoir fracturing technology. In terms of the intelligentization of the fracturing technology, the research progress and application of artificial intelligence technology in the prediction of geological parameters, design optimization of fracturing parameters, real-time diagnosis and control of fracturing construction, and development of fracturing tools and materials were introduced. The main problems existing in the development of the intelligent fracturing technology as well as the key development direction were analyzed. It is suggested that the intelligent fracturing technology is still in the stage of exploration and trial. Foreign countries have taken the lead in the intelligent identification of sweet spots, optimization of fracturing parameters, and intelligent control of field construction, and they have obtained successful applications in fracturing services in several blocks in North America. China has only carried out early exploration in fracturing Big Data machine learning, and intelligent fracturing materials, and there are few research and applications in intelligent fracturing equipment and tools, real-time monitoring and diagnosis, and intelligent field control. Therefore, there is a huge gap between China and other countries. The key problems affecting the development of intelligent fracturing technology were proposed, including the poor reliability of data samples, the lack of integrated intelligent fracturing methods and equipment, and the shortage of interdisciplinary talents. It was also predicted that with the development of the Internet of Everything technology, an intelligent completion fracturing system would be developed, which could complete reservoir evaluation, sweet spot identification, design optimization of fracturing parameters, field control, and post-fracturing evaluation without human intervention. At that point, the integrated intelligent reservoir transformation could be truly realized.
02
智能钻完井技术研究进展与前景展望
Research Progress and the Prospect of Intelligent Drilling and Completion Technologies
【摘要】智能钻完井技术是钻完井工程与人工智能、大数据、云计算等先进技术的有机融合,可实现油气钻完井过程的精细表征、决策优化和闭环调控,有望大幅提升钻完井效率、储层钻遇率和油气采收率,是油气领域的研究前沿和热点。从工程实际出发构建了油气钻完井人工智能应用场景,根据钻完井工程与人工智能技术的融合深度划分了智能钻完井技术的发展层次;分析了国内外智能钻完井理论与技术的研究现状,结合人工智能技术和钻完井工程的发展趋势提出了中长期发展规划,并凝练了智能钻完井技术研究面临的难题和重点攻关方向,以期为推进我国智能钻完井技术的基础理论研究和推广应用提供参考。
【Abstract】Intelligent drilling and completion technologies are the integration of drilling and completion engineering with Artificial Intelligence (AI), Big Data, cloud computing, and other advanced technologies. They can achieve fine characterization, optimal decision-making, and closed-loop control of oil and gas drilling and completion and are expected to significantly improve drilling and completion efficiency, reservoir drilling rate, and oil and gas recovery efficiency. Therefore, they are the research frontier and hot spot in the oil and gas field. In this paper, the application scenario system of AI in oil and gas drilling and completion was constructed from the engineering practice. Then, the development level of intelligent drilling and completion technologies was divided according to the integration degree of drilling and completion engineering with AI. Furthermore, the research status of intelligent drilling and completion theories and technologies both in China and abroad was discussed, with a medium-and long-term development plan being proposed according to the development trend of AI and drilling and completion engineering. Finally, the problems and key directions of intelligent drilling and completion technologies were summarized. The paper serves as a reference for accelerating the basic theoretical research and application of intelligent drilling and completion technologies in China.
03
钻井数字孪生系统设计与研发实践
Design and Research Practice of a Drilling Digital Twin System
【摘要】数字孪生技术作为智能钻井的理想范式,已呈现出巨大潜力,但由于钻井工程具有复杂工业系统的特性,数字孪生技术研发难度大,目前尚处于起步阶段。为此,在分析石油行业数字孪生技术发展现状的基础上,厘清了钻井数字孪生涉及的6项支撑技术,结合钻井工程业务需求,设计了钻井数字孪生系统的整体架构并详述了其功能及模型设计。通过井场数据标准采集、机理计算模型耦合及三维动态融合显示3项研发试验,从技术角度验证了钻井数字孪生技术落地应用的可行性。研究认为,构建钻井数字孪生系统,应以钻井工程数据为数据基础,基于业务需求进一步构建“机理 数据”的双计算核心,研发孪生体模型和业务应用模块,并将其作为载体,最终实现钻井数字孪生系统的应用。研究结果对推进数字孪生技术在钻井工程中的应用具有重要意义。
【Abstract】As an ideal paradigm of intelligent drilling, digital twin technology shows great potential. However, due to the complex industrial system characteristics of drilling engineering, the research and development (R & D) of digital twin technology has been difficult and is still in its infancy. Therefore, on the basis of analyzing the development status of digital twin technology in the petroleum industry, six supporting technologies involved in drilling digital twin were clarified. Adhering to the business needs of drilling engineering, the overall architecture of a drilling digital twin system was designed, and the function and model designs were described in detail. Through three R & D tests of wellsite data standard collection, mechanism calculation model coupling and three-dimensional (3D) dynamic fusion display, the feasibility of implementing the drilling digital twin technology was verified from a technical point of view. The research takes the position that the construction of the drilling digital twin system should take drilling engineering data as the foundational bases of data. The “mechanism data” dual computing core should be built based on the business needs, and the twin model and business application module should be developed as carriers, so as to realize the application of the drilling digital twin system. The research results are of great significance for promoting the application of digital twin technology in drilling engineering.
04
伸缩式井下机器人电液控制系统研制与性能评价
Development and Performance Evaluation of the Electro-Hydraulic Control System of a Telescopic Downhole Robot
【摘要】针对水平井钻井、测井过程中管串下入困难的问题,研制了伸缩式井下机器人,而控制系统是影响伸缩式井下机器人可靠性、稳定性的关键技术。基于伸缩式井下机器人的工作原理,提出了一种新的伸缩式井下机器人电液控制系统,并综合考虑电、液系统和执行机构,建立了基于电液耦合控制的数值仿真模型。通过分析机器人系统排量、牵引力及井眼直径对其运动性能的影响,揭示了机器人在不同工作参数条件下的运动规律,并设计了一套电液控制系统试验方案,研究了系统排量对机器人运动周期的影响规律。试验结果表明,不同系统排量下机器人运动周期的仿真曲线和试验曲线趋势基本一致。研究结果为液压伸缩式井下机器人的设计和现场应用提供了理论依据。
【Abstract】A telescopic downhole robot was developed, whose control system is the key point that affects its reliability and stability as well. According to the working mechanism of the robot, a novel electro-hydraulic control system was innovated. Further, a numerical simulation model based on electro-hydraulic coupling control was established by comprehensively considering the electric and hydraulic systems, and actuators as well. By analyzing the influence of system fluid rate, traction, and wellbore diameter on the robot kinematics, the movement of the robot under different working parameters was revealed. An experimental scheme of the electro-hydraulic control system was designed, and the influence of the system fluid rate on the motion cycle of the robot was studied. The experimental results show that the simulation curve of the motion cycle of the robot under different system fluid rate is basically consistent with the experimental curve. The research results can provide a theoretical basis for designing and studying hydraulic telescopic downhole robots.
05
海上油田电控智能控水采油工具研制及性能评价
Development and Performance Evaluation of an Electrically Controlled Intelligent Water Control and Oil Recovery Tool for Offshore Oilfields
【摘要】为了解决渤海油田高含水阶段生产井分层控水采油难题,提高生产井的稳油开发效果,研制了电控智能控水采油工具。工具采用单芯电缆实现井下供电和通讯,设计采用多测试通道并列结构,配备流量、含水率、温度和压力实时测试功能;采用超声波时差法测量单层产液量,采用射频法测量单层产液含水率,能够根据各层含水情况进行实时控制,实现生产井生产时的控水稳油。工具性能试验结果表明,电控智能控水采油工具在60 MPa压力下密封性能可靠,120℃温度下工作正常,含水率测量范围0~100%,在流量高时流量测量精度高,满足海上油田现场应用要求。电控智能控水采油工具为海上生产井实现分层采油、高效稳产开发提供了新的控水工具,也为下一步海上油田现场应用奠定了技术基础。
【Abstract】An electrically controlled intelligent water control and oil recovery tool was developed to tackle the separate-layer water control and oil recovery difficulties of production wells in the high water cut stage of Bohai Oilfield and to improve the effect of oil production stabilization in the development of production wells. In designing the tool, a single-core cable was employed to ensure the power supply and communications, and multiple test channels in parallel were adopted to achieve real-time testing of the flow rate, water cut, temperature, and pressure. In addition, the ultrasonic time difference method was used to test the fluid production from a single layer, and the radio frequency method was applied to test the water cut in the fluid production of a single layer. With this tool, real-time control could be achieved according to the water cut of each layer, and water control and oil production stabilization could be achieved in the development of production wells. The performance tests of this tool demonstrated that the seal performance was reliable under 60 MPa, and it could operate normally at 120 °C. The test range of water cut was from 0 to 100%, and the measuring accuracy was high for a high flow rate, which satisfied the requirements of offshore oilfield applications. The developed tool provides a new water control tool for separate-layer oil production and the efficient and stable development of offshore production wells and lays a foundation for its subsequent field application in offshore oilfields.
期刊推荐/Recommended Journal
《石油钻探技术》创刊于1973年,由中国石油化工集团有限公司主管、中国石化集团石油工程技术研究院有限公司主办。期刊主要报道国内外石油工程(包括钻井、完井、钻井液、固井、测井、录井、开采等专业)、 信息技术(人工智能、大数据、云计算、边缘计算、数字孪生、数字现实和物联网等技术在石油工程中的应用)、“双碳”目标(地热、干热岩、CCS/CCUS等技术研究进展,新能源技术在石油工程中的应用)、战略规划(能源政策方针、石油工程战略规划等)以及钻探机械设备与自动化方面的科技进展和现场经验。
联系我们/Contact Us
中国知网“中文精品学术期刊外文版数字出版工程”(简称JTP)自2015年启动,已与400余种学术期刊合作出版了5万余篇双语对照论文,积累了丰富的学术翻译/英语加工/学术推广经验。形成了集双语出版、主题电子书出版、双语讲座视频制作、期刊英文内容编校加工、资讯编译、海外推广为一体的全方位服务体系,全面助力期刊提升国际影响力。
Copyright © 2024 妖气游戏网 www.17u1u.com All Rights Reserved