科研论文!俄罗斯创新研发:3D打印磁铁助力科技大突破

科研论文!俄罗斯创新研发:3D打印磁铁助力科技大突破

首页休闲益智磁铁世界3D更新时间:2024-06-05

近日,据科技部及相关媒体报道,俄罗斯科研团队成功研发出一种利用3D打印技术制作的磁铁模型,该技术能使高科技设备的永磁材料更小型化、轻便,成本更低。早在2021年,俄罗斯科研团队就发表了《使用3D打印材料的便携式核磁共振磁体》研究论文。这种利用3d打印技术制作的磁铁模型,不仅解决了传统磁性材料制造工艺复杂、成本高昂的问题,更实现了定制化生产。俄罗斯科研团队的成功研发,无疑为全球的磁性材料研究领域打开了新的篇章,这一创新成果有望为全球磁性材料研究领域带来革命性的变革。

科技部报道:俄罗斯创新研发,3D打印磁铁

接下来,我们一起来了解一下俄罗斯乌拉尔联邦大学科研人员在《Journal of Magnetism and Magnetic Materials》(译为:《磁学与磁性材料杂志》)杂志上发表的《3D printed magnets with custom field geometry, produced using SmCo5/Fe exchange coupled nanocomposites》(译为:使用SmCo5/Fe交换耦合纳米复合材料制备具有自定义场几何结构的3D打印磁体)的研究论文。

俄罗斯科研团队发表在磁学与磁性材料杂志上的论文

摘要/Abstract

采用液-液相分离和沉淀的方法,将尼龙12沉积在SmCo5/Fe交换偶联纳米复合粉体上,制备了用于熔融沉积建模(3d打印)的磁性长丝。所制备的长丝在300 K时具有1 T的高矫顽力场。通过实现能够生成适当形状磁体的进化算法,研究了这些类型的长丝在具有特殊杂散场几何形状的3D打印磁体生产中的有用性。比较了期望的、计算的和磁体杂散场的几何结构,发现它们相当相似。

原文:

Magnetic filaments for fused deposition modeling, 3d printing, were produced by depositing Nylon12 onto SmCo5/Fe exchange coupled nanocomposites powders by liquid-liquid phase separation and precipitation. The produced filaments have a high coercive filed of 1 T at 300 K. The usefulness of these types of filaments in the production of 3D printed magnets with special stray field geometries was investigated by implementing an evolutionary algorithm capable of generating the appropriately shaped magnet. The desired, calculated and magnet stray field geometries were compared and found to be reasonably similar.

图形摘要/Graphical abstract

简介/Introduction

在当今世界,高性能永磁材料(HPPM)具有重要意义。然而,制造稀土所需的稀土元素的供应是脆弱的。为了缓解这一问题,正在探索几种研究途径:(i)改进现有材料,(ii)回收利用[1],(iii)开发新材料[2]。交换耦合纳米复合材料[3]是一种纳米材料,其中硬磁相的高各向异性用于加强软磁相的高磁化强度,属于后一类。这些材料的承诺是,它们可以储存高达1兆焦耳的能量[4],因此,我们需要使用更少的相同的应用。此外,高比例的材料由廉价的软磁材料组成,如Fe[5],这降低了总体稀土含量。尽管在这一领域的研究已经取得了重大进展,但为了生产交换耦合纳米复合磁体,需要克服的一个关键问题是,很难生产各向异性材料,迄今为止取得了一些最好的结果:薄膜[6]约为500 kJ/m3,纳米颗粒[7]超过230 kJ/m3。

在本研究中,我们建议完全忽略各向异性磁体的问题,而将重点放在当前产生的磁交换耦合纳米复合材料上,因此我们建议将这些磁性材料用于3d打印粘结磁体,这是典型的各向同性磁性材料。粘结磁体的需求量很大[2],目前有大量的各向同性变体可供选择。此外,随着3d打印技术的广泛应用和普及,聚合物长丝与磁性交换耦合纳米复合材料封装在一起,有望成为一种高性能、低成本的材料,用于生产复杂几何形状的磁体、快速成型和小批量生产。

为此,我们选择聚酰胺12(PA12)作为聚合物基体,因为其成本相对较低且易于获得,具有良好的机械性能并提供优异的耐腐蚀性以及合理的高工作温度。对于交换耦合纳米复合材料,我们选择了SmCo5/Fe[8],因为该系统的退火制度允许我们为研究生产足够大的量。

原文:

In today's world, high performance permanent magnets (HPPM), are of vital importance. However, the supply of the rare earth elements, needed for their manufacture is tenuous. In order to alleviate this problem, several research avenues are being explored: (i) improvement of current generation of materials, (ii) recycling [1], (iii) development of new materials [2]. Exchange coupled nanocomposites [3], a nanomaterial in which the high anisotropy of a hard magnetic phase is used to stiffen the high magnetization of a soft magnetic phase, fall into the latter category. The promise of these materials is that they can store up to 1 MJ of energy [4], thus we would need to use less for the same application. Moreover, a high percentage of the material is composed of inexpensive soft magnetic materials, such as Fe [5], which reduces the overall rare earth content. Though significant strides have been made in this area of research, one crucial problem which needs to be overcome in order to produce exchange coupled nanocomposite magnets, is the fact that it is very difficult to produce anisotropic materials, with some of the best results so far: in thin films [6] of around 500 kJ/m3 and nanoparticles [7] of over 230 kJ/m3.

In this study, we propose to ignore the problem of anisotropic magnets altogether, and focus on what the current generation of magnetic exchange coupled nanocomposites can do. Therefore we propose the usage of these magnetic materials in 3d printed bonded magnets, which are typically isotropic magnetic materials. The demand for bonded magnets is large [2], and there are plenty of isotropic variants for offer currently. Moreover with the increasing adoption and availability of 3d printing, polymer filaments with encapsulated magnetic exchange coupled nanocomposites may be a viable high performance and lower cost material for the production of magnets with complex geometries, rapid prototyping and small series production.

To this end, we have selected polyamide 12 (PA12) as the polymer matrix, because it is relatively low cost and readily available, has good mechanical properties and provides excellent corrosion resistance along with reasonably high operating temperatures. For the exchange coupled nanocomposite we have selected SmCo5/Fe [8], because the annealing regime for this system allows us to produce it in sufficiently large quantity for the study.

查看全文
大家还看了
也许喜欢
更多游戏

Copyright © 2024 妖气游戏网 www.17u1u.com All Rights Reserved