y=1/x是反比例函数,不是有界函数,因为当x趋近于0时,y趋近于无穷大。
有界函数是设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。其中m称为f(x)在区间E上的下界,M称为f(x)在区间E上的上界。
函数的性质:有界性,连续性,可积性。
单调性
闭区间上的单调函数必有界。其逆命题不成立。
连续性
闭区间上的连续函数必有界。其逆命题不成立。
可积性
闭区间上的可积函数必有界。其逆命题不成立。
y=1/x是反比例函数,不是有界函数,因为当x趋近于0时,y趋近于无穷大。
有界函数是设f(x)是区间E上的函数,若对于任意的x属于E,存在常数m、M,使得m≤f(x)≤M,则称f(x)是区间E上的有界函数。其中m称为f(x)在区间E上的下界,M称为f(x)在区间E上的上界。
函数的性质:有界性,连续性,可积性。
单调性
闭区间上的单调函数必有界。其逆命题不成立。
连续性
闭区间上的连续函数必有界。其逆命题不成立。
可积性
闭区间上的可积函数必有界。其逆命题不成立。
Copyright © 2024 妖气游戏网 www.17u1u.com All Rights Reserved