你这样的问题是不能直接回答的。你首先要讲清楚你想用初等变换做什么。
如果是算矩阵的秩,那么可以随意使用行变换和列变换。
如果是解线性方程组,也是可以随意使用,但是列变换需要保留记录,因为还需要解出未知向量。
如果是合同变换或者相似变换,那么必须每一步同时使用相匹配的行变换和列变换。
补充:
对于线性方程组,行列变换都可以,行变换对应于消元,列变换对应于换元,和别的换元法一样,换元过程需要保留,这样才能求出最终的解。
具体一点,如果用双侧变换化相抵标准型PAQ=diag{I,0},那么原来的方程组相当于PAQy=Pb,其中x=Qy,P直接作用在增广矩阵上,不需要保留,而Q需要保留,一般保留每一个列初等变换,这样回头用y解x的时候就没有任何困难,当然逐步累积Q也是可以的。
至于“不能用列变换”、“列变换无意义”之类的说法是大错特错,只能说列变换并不总是方便的。
行列式中是可以同时行变换和列变换同时使用的。 矩阵的初等变换不能同时行变换和列变换同时使用的。 在使用时候,还是要分场合进行讨论:
1、求矩阵的秩可以行初等变换和列初等变换混用,因为“经初等变换矩阵的秩不变”。(一定要用可逆变换,否则至少自己保证安全性。)
2、对于行列式求值而言,可以随便使用行变换和列变换,以及其它手段。行列式的计算只要得出结果出来就行了,是否使用哪种方法要结合行列式乘积定理来理解。
3、如果是解线性方程组只能用初等行变换,才能保证同解。
4、如果求矩阵的逆矩阵也只能用初等行变换。
5、解方程组Ax=b,那么两种变换都可以用,但不是无条件的。比如行变换就要同时作用于系数矩阵和右端项,列变换则需要保留信息,以便最后求解的时候用。